// Numbas version: finer_feedback_settings {"name": "Indefinite Integrals 1_2019 (custom feedback)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "
Indefinite Integrals
", "variable_groups": [], "tags": [], "extensions": [], "preamble": {"css": "", "js": ""}, "rulesets": {}, "ungrouped_variables": ["a", "c", "b", "d", "f"], "name": "Indefinite Integrals 1_2019 (custom feedback)", "functions": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "Solve the following indefinite integrals, using $C$ to represent an unknown constant.
", "parts": [{"showPreview": true, "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "prompt": "$\\int(x^4-\\var{a}x^3+\\var{b}x-\\var{c})\\mathrm{dx}$
", "vsetRangePoints": 5, "extendBaseMarkingAlgorithm": true, "expectedVariableNames": [], "checkVariableNames": false, "customMarkingAlgorithm": "", "unitTests": [], "showCorrectAnswer": true, "scripts": {}, "failureRate": 1, "type": "jme", "variableReplacements": [], "checkingAccuracy": 0.001, "marks": 1, "answer": "x^5/5-{a}x^4/4+{b}x^2/2-{c}x+C", "checkingType": "absdiff"}, {"showPreview": true, "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "prompt": "$\\int(u+\\var{d})(2u+\\var{f})\\mathrm{du}$
", "vsetRangePoints": 5, "extendBaseMarkingAlgorithm": true, "expectedVariableNames": [], "checkVariableNames": false, "customMarkingAlgorithm": "malrules:\n [\n [\"(u^2/2+{d}*u)*(u^2+{f}*u)+C\", \"It looks like you integrated each term without multiplying out the expression. Try multiplying out first.\"]\n ]\n\n\nparsed_malrules: \n map(\n [\"expr\":parse(x[0]),\"feedback\":x[1]],\n x,\n malrules\n )\n\nagree_malrules (Do the student's answer and the expected answer agree on each of the sets of variable values?):\n map(\n len(filter(not x ,x,map(\n try(\n resultsEqual(unset(question_definitions,eval(studentexpr,vars)),unset(question_definitions,eval(malrule[\"expr\"],vars)),settings[\"checkingType\"],settings[\"checkingAccuracy\"]),\n message,\n false\n ),\n vars,\n vset\n )))Take care to include the brackets in the trigonometric expressions, i.e. write sin(x) rather than sinx.
", "vsetRangePoints": 5, "extendBaseMarkingAlgorithm": true, "expectedVariableNames": [], "checkVariableNames": false, "customMarkingAlgorithm": "malrules:\n [\n [\"1/2cos(2x)/cos(x)+C\", \"It looks like you divided the integral of the top by the integral of the bottom. Integration doesn't work like this. Try using the trigonometric identity $\\sin(2x)=2\\sin(x)\\cos(x)$ first instead.\"]\n ]\n\n\nparsed_malrules: \n map(\n [\"expr\":parse(x[0]),\"feedback\":x[1]],\n x,\n malrules\n )\n\nagree_malrules (Do the student's answer and the expected answer agree on each of the sets of variable values?):\n map(\n len(filter(not x ,x,map(\n try(\n resultsEqual(unset(question_definitions,eval(studentexpr,vars)),unset(question_definitions,eval(malrule[\"expr\"],vars)),settings[\"checkingType\"],settings[\"checkingAccuracy\"]),\n message,\n false\n ),\n vars,\n vset\n )))$\\int(x^2-6+\\frac{x}{2})\\mathrm{dx}$
", "vsetRangePoints": 5, "extendBaseMarkingAlgorithm": true, "expectedVariableNames": [], "checkVariableNames": false, "customMarkingAlgorithm": "", "unitTests": [], "showCorrectAnswer": true, "scripts": {}, "failureRate": 1, "type": "jme", "variableReplacements": [], "checkingAccuracy": 0.001, "marks": 1, "answer": "x^3/3-6x+x^2/4+C", "checkingType": "absdiff"}, {"showPreview": true, "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "prompt": "$\\int{(\\frac{3}{4}-2p+\\frac{4}{p^2}})\\mathrm{dp}$
", "vsetRangePoints": 5, "extendBaseMarkingAlgorithm": true, "expectedVariableNames": [], "checkVariableNames": false, "customMarkingAlgorithm": "malrules:\n [\n [\"3/4p-p^2+4ln(p^2)+C\", \"Check the third term again. $\\\\int \\\\frac{1}{p} \\\\ dp = \\\\ln p$ but $\\\\int \\\\frac{1}{p^n} \\\\ dp$ for $n \\\\neq 1$ is not $\\\\ln(p^n)$. That is, if the power on $p$ under the line is anything other than $1$, the integral is not $\\\\ln$.\"]\n ]\n\n\nparsed_malrules: \n map(\n [\"expr\":parse(x[0]),\"feedback\":x[1]],\n x,\n malrules\n )\n\nagree_malrules (Do the student's answer and the expected answer agree on each of the sets of variable values?):\n map(\n len(filter(not x ,x,map(\n try(\n resultsEqual(unset(question_definitions,eval(studentexpr,vars)),unset(question_definitions,eval(malrule[\"expr\"],vars)),settings[\"checkingType\"],settings[\"checkingAccuracy\"]),\n message,\n false\n ),\n vars,\n vset\n )))