// Numbas version: finer_feedback_settings {"name": "Simon's copy of Solve a separable first order ODE,", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"type": "gapfill", "prompt": "
Solve the equation, and enter the expression for $f(x)$ in the box. Do not enter decimals in your answer.
\n$f(x)=$ [[0]].
", "scripts": {}, "sortAnswers": false, "customMarkingAlgorithm": "", "showFeedbackIcon": true, "unitTests": [], "showCorrectAnswer": true, "variableReplacements": [], "gaps": [{"type": "jme", "showPreview": true, "extendBaseMarkingAlgorithm": true, "expectedVariableNames": [], "notallowed": {"strings": ["."], "partialCredit": 0, "showStrings": false, "message": "Do not enter decimals in your answer.
"}, "scripts": {}, "vsetRange": [0, 1], "customMarkingAlgorithm": "", "checkingAccuracy": 0.001, "vsetRangePoints": 5, "showFeedbackIcon": true, "checkVariableNames": false, "unitTests": [], "showCorrectAnswer": true, "answerSimplification": "all", "checkingType": "absdiff", "answer": "{d1^2+b1}/{c1^(2/a1)}*x^(2/{a1})-{b1}", "variableReplacements": [], "marks": 1, "failureRate": 1, "variableReplacementStrategy": "originalfirst"}], "extendBaseMarkingAlgorithm": true, "marks": 0, "variableReplacementStrategy": "originalfirst"}], "metadata": {"description": "Find the solution of a first order separable differential equation of the form $axyy'=b+y^2$.
", "licence": "Creative Commons Attribution 4.0 International"}, "preamble": {"css": "", "js": ""}, "ungrouped_variables": ["a1", "c1", "b1", "d1"], "variable_groups": [], "advice": "The differential equation is separable, and we can therefore write
\n\\[\\int{\\!\\frac{y}{\\var{b1}+y^2}\\,\\mathrm{d}y}=\\frac{1}{\\var{a1}}\\int{\\!\\frac{1}{x}\\,\\mathrm{d}x},\\]
\nwhich can be integrated to give
\n\\[\\frac{1}{2}\\ln\\lvert\\var{b1}+y^2\\rvert=\\frac{1}{\\var{a1}}\\ln\\lvert x\\rvert+c.\\]
\nExponentiating both sides leads to
\n\\[\\sqrt{\\var{b1}+y^2}=\\simplify{Bx^(1/{a1})}\\]
\nand, on rearranging for $y$, we have
\n\\[y=\\pm\\sqrt{\\simplify{A*x^(2/{a1})-{b1}}}.\\]
\nThen we have
\n\\[\\var{d1}=y(\\var{c1})=\\pm\\sqrt{\\simplify{A*{c1}^(2/{a1})-{b1}}},\\]
\nso
\n\\[A=\\simplify[std]{({d1}^2+{b1})/{c1}^(2/{a1})}=\\simplify{{d1^2+b1}/{c1^(2/a1)}}.\\]
\nThen the full solution is
\n\\[y=\\sqrt{\\simplify{{d1^2+b1}/{c1^(2/a1)}*x^(2/{a1})-{b1}}}.\\]
", "variables": {"d1": {"definition": "random(1..9)", "group": "Ungrouped variables", "description": "", "name": "d1", "templateType": "anything"}, "a1": {"definition": "2*random(1..4)", "group": "Ungrouped variables", "description": "", "name": "a1", "templateType": "anything"}, "c1": {"definition": "random(1..4)^(a1/2)", "group": "Ungrouped variables", "description": "", "name": "c1", "templateType": "anything"}, "b1": {"definition": "random(1..9 except d1^2)", "group": "Ungrouped variables", "description": "", "name": "b1", "templateType": "anything"}}, "rulesets": {"std": ["all", "!collectNumbers", "!noLeadingMinus"]}, "statement": "You are given the differential equation
\n\\[\\simplify{{a1}*x*y*y'}=\\var{b1}+y^2,\\]
\nsatisfying $y(\\var{c1})=\\var{d1}$.
\nThe solution can be written in the form $y=\\sqrt{f(x)}$, where $f(x)$ is some function of $x$.
", "name": "Simon's copy of Solve a separable first order ODE,", "tags": [], "extensions": [], "functions": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "type": "question", "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}