// Numbas version: exam_results_page_options {"name": "Deirdre's copy of T6Q1 (custom feedback)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Deirdre's copy of T6Q1 (custom feedback)", "preamble": {"js": "", "css": ""}, "variable_groups": [], "variables": {}, "statement": "

Let $z=3xy+x^2-2y^3$. Find the partial derivatives:

", "parts": [{"customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "sortAnswers": false, "marks": 0, "scripts": {}, "type": "gapfill", "gaps": [{"vsetRangePoints": 5, "customMarkingAlgorithm": "malrules:\n [\n [\"3y+3x+2x-6y^2\", \"The product rule is not needed to differentiate $3xy$. Remember, when partially differentiating with respect to $x$, treat $y$ as a number. This also goes for the last term: $2y^3$ is just treated as a number.\"],\n [\"(-3y-2x)/(3x-6y^2)\", \"It looks like you have used implicit differentiation rather than partial differentiation. Implicit differentiation is only used if you wish to find $\\\\frac{dy}{dx}$, not if you wish to find $\\\\frac{\\\\partial y}{\\\\partial x}$ or $\\\\frac{\\\\partial z}{\\\\partial x}$ etc.\"]\n ]\n\n\nparsed_malrules: \n map(\n [\"expr\":parse(x[0]),\"feedback\":x[1]],\n x,\n malrules\n )\n\nagree_malrules (Do the student's answer and the expected answer agree on each of the sets of variable values?):\n map(\n len(filter(not x ,x,map(\n try(\n resultsEqual(unset(question_definitions,eval(studentexpr,vars)),unset(question_definitions,eval(malrule[\"expr\"],vars)),settings[\"checkingType\"],settings[\"checkingAccuracy\"]),\n message,\n false\n ),\n vars,\n vset\n )))$\\frac{\\partial z}{\\partial x}$= [[0]]

"}, {"customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "sortAnswers": false, "marks": 0, "scripts": {}, "type": "gapfill", "gaps": [{"vsetRangePoints": 5, "customMarkingAlgorithm": "malrules:\n [\n [\"3y+3x+2x-6y^2\", \"The product rule is not needed to differentiate $3xy$. Remember, when partially differentiating with respect to $y$, treat $x$ as a number. This also goes for the second term: $x^2$ is just treated as a number.\"],\n [\"(-3y-2x)/(3x-6y^2)\", \"It looks like you have used implicit differentiation rather than partial differentiation. Implicit differentiation is only used if you wish to find $\\\\frac{dy}{dx}$, not if you wish to find $\\\\frac{\\\\partial y}{\\\\partial x}$ or $\\\\frac{\\\\partial z}{\\\\partial y}$ etc.\"]\n ]\n\n\nparsed_malrules: \n map(\n [\"expr\":parse(x[0]),\"feedback\":x[1]],\n x,\n malrules\n )\n\nagree_malrules (Do the student's answer and the expected answer agree on each of the sets of variable values?):\n map(\n len(filter(not x ,x,map(\n try(\n resultsEqual(unset(question_definitions,eval(studentexpr,vars)),unset(question_definitions,eval(malrule[\"expr\"],vars)),settings[\"checkingType\"],settings[\"checkingAccuracy\"]),\n message,\n false\n ),\n vars,\n vset\n )))$\\frac{\\partial z}{\\partial y}$=[[0]]

"}, {"customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "sortAnswers": false, "marks": 0, "scripts": {}, "type": "gapfill", "gaps": [{"vsetRangePoints": 5, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "checkingType": "absdiff", "marks": 1, "scripts": {}, "expectedVariableNames": [], "answer": "2", "type": "jme", "showPreview": true, "vsetRange": [0, 1], "showCorrectAnswer": true, "failureRate": 1, "showFeedbackIcon": true, "unitTests": [], "variableReplacementStrategy": "originalfirst", "checkingAccuracy": 0.001, "variableReplacements": [], "checkVariableNames": false}], "showCorrectAnswer": true, "showFeedbackIcon": true, "unitTests": [], "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "prompt": "

$\\frac{\\partial^2 z}{\\partial x^2}$=[[0]]