// Numbas version: finer_feedback_settings {"name": "Simon's copy of Inverse Functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "variable_groups": [], "name": "Simon's copy of Inverse Functions", "parts": [{"showCorrectAnswer": true, "marks": 0, "showFeedbackIcon": true, "unitTests": [], "sortAnswers": false, "extendBaseMarkingAlgorithm": true, "gaps": [{"vsetRangePoints": 5, "showCorrectAnswer": true, "marks": "2", "failureRate": 1, "showFeedbackIcon": true, "unitTests": [], "extendBaseMarkingAlgorithm": true, "answer": "(y-{c[1]})/{c[0]}", "checkingAccuracy": 0.001, "showPreview": true, "expectedVariableNames": ["x", "y"], "checkingType": "absdiff", "customMarkingAlgorithm": "", "answerSimplification": "all", "type": "jme", "vsetRange": [0, 1], "scripts": {}, "variableReplacements": [], "checkVariableNames": true, "variableReplacementStrategy": "originalfirst"}], "customMarkingAlgorithm": "", "type": "gapfill", "scripts": {}, "variableReplacements": [], "prompt": "

$\\simplify{y={c[0]}x+{c[1]}}$

\n

$x=$ [[0]]

\n

", "variableReplacementStrategy": "originalfirst"}, {"showCorrectAnswer": true, "marks": 0, "showFeedbackIcon": true, "unitTests": [], "sortAnswers": false, "extendBaseMarkingAlgorithm": true, "gaps": [{"vsetRangePoints": 5, "showCorrectAnswer": true, "marks": "2", "failureRate": 1, "showFeedbackIcon": true, "unitTests": [], "extendBaseMarkingAlgorithm": true, "answer": "{c[3]}y/({c[2]}-y)", "checkingAccuracy": 0.001, "showPreview": true, "expectedVariableNames": ["x", "y"], "checkingType": "absdiff", "customMarkingAlgorithm": "", "answerSimplification": "all", "type": "jme", "vsetRange": [0, 1], "scripts": {}, "variableReplacements": [], "checkVariableNames": true, "variableReplacementStrategy": "originalfirst"}], "customMarkingAlgorithm": "", "type": "gapfill", "scripts": {}, "variableReplacements": [], "prompt": "

$\\simplify{y={c[2]}x/({c[3]}+x)}$

\n

$x=$ [[0]]

\n

", "variableReplacementStrategy": "originalfirst"}, {"showCorrectAnswer": true, "marks": 0, "showFeedbackIcon": true, "unitTests": [], "sortAnswers": false, "extendBaseMarkingAlgorithm": true, "gaps": [{"vsetRangePoints": 5, "showCorrectAnswer": true, "marks": "2", "failureRate": 1, "showFeedbackIcon": true, "unitTests": [], "extendBaseMarkingAlgorithm": true, "answer": "(-{c[8]}+{c[7]}{c[9]}-{c[9]}y)/(y-{c[7]})", "checkingAccuracy": 0.001, "showPreview": true, "expectedVariableNames": ["x", "y"], "checkingType": "absdiff", "customMarkingAlgorithm": "", "answerSimplification": "all", "type": "jme", "vsetRange": [0, 1], "scripts": {}, "variableReplacements": [], "checkVariableNames": true, "variableReplacementStrategy": "originalfirst"}], "customMarkingAlgorithm": "", "type": "gapfill", "scripts": {}, "variableReplacements": [], "prompt": "

$\\simplify{y={c[7]}-{c[8]}/({c[9]}+x)}$

\n

$x=$ [[0]]

\n

", "variableReplacementStrategy": "originalfirst"}, {"showCorrectAnswer": true, "marks": 0, "showFeedbackIcon": true, "unitTests": [], "sortAnswers": false, "extendBaseMarkingAlgorithm": true, "gaps": [{"vsetRangePoints": 5, "showCorrectAnswer": true, "marks": "2", "failureRate": 1, "showFeedbackIcon": true, "unitTests": [], "extendBaseMarkingAlgorithm": true, "answer": "y^2-{c[10]}", "checkingAccuracy": 0.001, "showPreview": true, "expectedVariableNames": ["x", "y"], "checkingType": "absdiff", "customMarkingAlgorithm": "", "answerSimplification": "all", "type": "jme", "vsetRange": [0, 1], "scripts": {}, "variableReplacements": [], "checkVariableNames": true, "variableReplacementStrategy": "originalfirst"}], "customMarkingAlgorithm": "", "type": "gapfill", "scripts": {}, "variableReplacements": [], "prompt": "

$\\simplify{y=sqrt(x+{c[10]})}$

\n

$x=$ [[0]]

\n

", "variableReplacementStrategy": "originalfirst"}, {"showCorrectAnswer": true, "marks": 0, "showFeedbackIcon": true, "unitTests": [], "sortAnswers": false, "extendBaseMarkingAlgorithm": true, "gaps": [{"vsetRangePoints": 5, "showCorrectAnswer": true, "marks": "2", "failureRate": 1, "showFeedbackIcon": true, "unitTests": [], "extendBaseMarkingAlgorithm": true, "answer": "1/(y-{c[11]})", "checkingAccuracy": 0.001, "showPreview": true, "expectedVariableNames": ["x", "y"], "checkingType": "absdiff", "customMarkingAlgorithm": "", "answerSimplification": "all", "type": "jme", "vsetRange": [0, 1], "scripts": {}, "variableReplacements": [], "checkVariableNames": true, "variableReplacementStrategy": "originalfirst"}], "customMarkingAlgorithm": "", "type": "gapfill", "scripts": {}, "variableReplacements": [], "prompt": "

$\\simplify{y=1/x+{c[11]}}$

\n

$x=$ [[0]]

\n

", "variableReplacementStrategy": "originalfirst"}], "rulesets": {}, "statement": "

Rearrange these equations to make $x$ the subject.

", "preamble": {"js": "", "css": ""}, "variablesTest": {"maxRuns": 100, "condition": ""}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Rearranging equations to change the subject

"}, "tags": [], "ungrouped_variables": ["c"], "variables": {"c": {"templateType": "anything", "description": "", "name": "c", "group": "Ungrouped variables", "definition": "repeat(random(-5..5 except 0 except 1 except -1),15)"}}, "extensions": [], "advice": "

(a)

\n

$\\simplify{y={c[0]}x+{c[1]}}$

\n

$\\simplify{y-{c[1]}={c[0]}x}$

\n

$\\simplify{(y-{c[1]})/{c[0]}={x}}$          (dividing both sides by $\\var{c[0]}$)

\n

\n

(b)

\n

$\\simplify{y={c[2]}x/({c[3]}+x)}$

\n

$\\simplify{y*({c[3]}+x)={c[2]}}x$        (multiply both sides by denominator)

\n

$\\simplify{y*{c[3]}+x y={c[2]}}x$        (expanding bracket)

\n

$\\simplify{y*{c[3]}={c[2]}x- y x}$        (moving all $x$ to the same side)

\n

$\\simplify{y*{c[3]}=x({c[2]}- y)}$        (factorising)

\n

$\\simplify{(y*{c[3]})/({c[2]}- y)=x}$

\n

\n

(c)

\n

$\\simplify{y={c[7]}-{c[8]}/({c[9]}+x)}$

\n

$\\simplify{y-{c[7]}=-{c[8]}/({c[9]}+x)}$

\n

$\\simplify{({c[9]}+x)=-{c[8]}/(y-{c[7]})}$

\n

$\\simplify{x=-{c[9]}-{c[8]}/(y-{c[7]})}$                which is algebraically the same as  $\\simplify{x=(-{c[9]}(y-{c[7]})-{c[8]})/(y-{c[7]})}=\\simplify{(-{c[9]}y+{c[7]*c[9]-c[8]})/(y-{c[7]})}$

\n

\n

(d)

\n

$\\simplify{y=sqrt(x+{c[10]})}$

\n

$\\simplify{y^2=(x+{c[10]})}$          (squaring both sides)

\n

$\\simplify{y^2-{c[10]}=x}$   

\n

\n

(e)

\n

$\\simplify{y=1/x+{c[11]}}$

\n

$\\simplify{y-{c[11]}=1/x}$

\n

$\\simplify{x(y-{c[11]})=1}$           (multiply both sides by $x$)

\n

$\\simplify{x=1/(y-{c[11]})}$

", "type": "question", "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}