// Numbas version: finer_feedback_settings {"name": "Simon's copy of Mean, Median, Mode and Standard Deviation", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": ["a1", "a3", "a2", "a5", "a4", "a7", "a6"], "statement": "
Calculate the mean, median, mode and standard deviation of the following set of numbers:
\n$\\var{a1}, \\var{a2}, \\var{a3}, \\var{a4}, \\var{a5}, \\var{a6}, \\var{a7}$ .
\n
Enter you answers as decimals to 2 decimal places.
Mean: $\\mu = \\frac{1}{N}\\sum\\limits_{i=1}^N x_i$
\nMedian: middle value
\nMode: most common value
\nStandard deviation: $\\sigma = \\sqrt{ \\frac{\\sum_{i=1}^N (x_i-\\mu)^2}{N}}$
", "extensions": ["stats"], "rulesets": {"std": ["all", "!collectNumbers", "!noLeadingMinus"]}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Topics covered are calculating the mean, median, mode and standard deviation.
\nrebelmaths
\n$\\text{mean}=\\;\\;$[[0]]
", "variableReplacementStrategy": "originalfirst"}, {"variableReplacements": [], "gaps": [{"showPrecisionHint": false, "precisionType": "dp", "marks": 2, "allowFractions": false, "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacementStrategy": "originalfirst", "maxValue": "{a3}", "precisionPartialCredit": 0, "type": "numberentry", "showCorrectAnswer": true, "scripts": {}, "correctAnswerFraction": false, "variableReplacements": [], "minValue": "{a3}", "strictPrecision": false, "precision": "2"}], "marks": 0, "showCorrectAnswer": true, "scripts": {}, "type": "gapfill", "prompt": "$\\text{median}=\\;\\;$[[0]]
", "variableReplacementStrategy": "originalfirst"}, {"variableReplacements": [], "gaps": [{"showPrecisionHint": false, "correctAnswerFraction": false, "marks": 2, "showCorrectAnswer": true, "scripts": {}, "allowFractions": false, "minValue": "{a3}", "variableReplacementStrategy": "originalfirst", "type": "numberentry", "variableReplacements": [], "maxValue": "{a3}"}], "marks": 0, "showCorrectAnswer": true, "scripts": {}, "type": "gapfill", "prompt": "$\\text{mode}=\\;\\;$[[0]]
", "variableReplacementStrategy": "originalfirst"}, {"variableReplacements": [], "gaps": [{"checkingtype": "absdiff", "vsetrange": [0, 1], "showCorrectAnswer": true, "checkingaccuracy": 0.01, "checkvariablenames": false, "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "scripts": {}, "vsetrangepoints": 5, "answersimplification": "std", "marks": 2, "variableReplacements": [], "type": "jme", "showpreview": true, "answer": "{precround(sqrt(1/7*(a1^2+a2^2+a3^2+a4^2+a5^2+a6^2+a7^2)-(1/7(a1+a2+a3+a4+a5+a6+a7))^2),2)}"}], "marks": 0, "showCorrectAnswer": true, "scripts": {}, "type": "gapfill", "prompt": "$\\text{standard deviation}=\\;\\;$[[0]]
", "variableReplacementStrategy": "originalfirst"}], "variablesTest": {"maxRuns": 100, "condition": ""}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}