// Numbas version: finer_feedback_settings {"name": "Blathnaid's copy of cormac's copy of Julie's copy of Indefinite integral by substitution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Blathnaid's copy of cormac's copy of Julie's copy of Indefinite integral by substitution", "tags": [], "metadata": {"description": "

Find $\\displaystyle \\int x(a x ^ 2 + b)^{m}\\;dx$

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Find the following integral using integration by substitution.

\n

Input the constant of integration as $C$.

", "advice": "\n\t \n\t \n\t

This exercise is best solved by using substitution.
Note that if we let $u=\\simplify[std]{{a} * (x ^ 2) + {b}}$ then $du=\\simplify[std]{({2*a} * x)*dx }$
Hence we can replace $xdx$ by $\\frac{1}{\\var{2*a}}du$.

\n\t \n\t \n\t \n\t

Hence the integral becomes:

\n\t \n\t \n\t \n\t

\\[\\begin{eqnarray*} I&=&\\simplify[std]{Int((1/{2*a})u^{m},u)}\\\\\n\t \n\t &=&\\simplify[std]{(1/{2*a})u^{m+1}/{m+1}+C}\\\\\n\t \n\t &=& \\simplify[std]{({a} * (x ^ 2) + {b})^{m+1}/{2*a*(m+1)}+C}\n\t \n\t \\end{eqnarray*}\\]

\n\t \n\t \n\t \n\t

A Useful Result
This example can be generalised.
Suppose \\[I = \\int\\; f'(x)g(f(x))\\;dx\\]
The using the substitution $u=f(x)$ we find that $du=f'(x)\\;dx$ and so using the same method as above:
\\[I = \\int g(u)\\;du \\]
And if we can find this simpler integral in terms of $u$ we can replace $u$ by $f(x)$ and get the result in terms of $x$.

\n\t \n\t \n\t \n\t", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "extensions": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "templateType": "anything"}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(4..9)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything"}, "s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["b", "m", "a", "s1"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[I=\\simplify[std]{Int( x*({a} * x ^ 2 + {b})^{m},x)}\\]

\n

$I=\\;$[[0]]

\n

Input numbers in your answer as integers or fractions and not as decimals.

\n

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 3, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({a} * (x ^ 2) + {b})^{m+1}/{2*a*(m+1)}+C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input all numbers as integers or fractions and not as decimals.

"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "cormac breen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/306/"}, {"name": "Blathnaid Sheridan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/447/"}], "resources": []}]}], "contributors": [{"name": "cormac breen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/306/"}, {"name": "Blathnaid Sheridan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/447/"}]}