// Numbas version: exam_results_page_options {"name": "Indefinite Integrals Q3 2019 (custom feedback)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "variable_groups": [], "name": "Indefinite Integrals Q3 2019 (custom feedback)", "ungrouped_variables": ["a", "c", "b", "d", "f"], "statement": "

Solve the following indefinite integrals, using $C$ to represent an unknown constant.

", "preamble": {"js": "", "css": ""}, "tags": [], "advice": "

Indefinite Integrals

", "variables": {"f": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "f", "definition": "random(1..8 except d)"}, "c": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "c", "definition": "random(1..9 except a except b)"}, "a": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "a", "definition": "random(2..9)"}, "b": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "b", "definition": "random(2..9 except a)"}, "d": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "d", "definition": "random(1..8)"}}, "rulesets": {}, "parts": [{"extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "malrules:\n [\n [\"1/2cos(2x)/cos(x)+C\", \"It looks like you divided the integral of the top by the integral of the bottom. Integration doesn't work like this. Try using the trigonometric identity $\\sin(2x)=2\\sin(x)\\cos(x)$ first instead.\"],\n [\"1/2cos(2x)/cos(x)\", \"It looks like you divided the integral of the top by the integral of the bottom. Integration doesn't work like this. Try using the trigonometric identity $\\sin(2x)=2\\sin(x)\\cos(x)$ first instead.\"],\n [\"2sin(x)\", \"Don't forget the constant of integration!\"],\n [\"-2sin(x)+C\", \"Double check the rule for integrating $\\\\cos x$.\"],\n [\"-2sin(x)\", \"Double check the rule for integrating $\\\\cos x$.\"]\n ]\n\n\nparsed_malrules: \n map(\n [\"expr\":parse(x[0]),\"feedback\":x[1]],\n x,\n malrules\n )\n\nagree_malrules (Do the student's answer and the expected answer agree on each of the sets of variable values?):\n map(\n len(filter(not x ,x,map(\n try(\n resultsEqual(unset(question_definitions,eval(studentexpr,vars)),unset(question_definitions,eval(malrule[\"expr\"],vars)),settings[\"checkingType\"],settings[\"checkingAccuracy\"]),\n message,\n false\n ),\n vars,\n vset\n )))$\\int\\frac{\\sin(2x)}{\\sin(x)}\\mathrm{dx}$.

\n

Take care to include the brackets in the trigonometric expressions, i.e. write sin(x) rather than sinx.

", "failureRate": 1, "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "vsetRangePoints": 5, "unitTests": [], "marks": 1, "expectedVariableNames": []}], "metadata": {"description": "

Simple Indefinite Integrals

\n

", "licence": "Creative Commons Attribution 4.0 International"}, "extensions": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "type": "question", "contributors": [{"name": "Clodagh Carroll", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/384/"}, {"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}]}]}], "contributors": [{"name": "Clodagh Carroll", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/384/"}, {"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}]}