// Numbas version: finer_feedback_settings {"name": "Indefinite Integrals Q5 2019 (custom feedback)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"metadata": {"description": "

Simple Indefinite Integrals

\n

", "licence": "Creative Commons Attribution 4.0 International"}, "extensions": [], "ungrouped_variables": ["a", "c", "b", "d", "f"], "preamble": {"css": "", "js": ""}, "rulesets": {}, "parts": [{"variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "malrules:\n [\n [\"q^4/4+2/3q^(3/2)\", \"Don't forget to include the constant of integration!\"],\n [\"q^4/4+q^(1/2)\", \"Check the second term again. Note that $\\\\sqrt{q}=q^{\\\\frac{1}{2}}$ but this has not actually been integrated.\"],\n [\"q^4/4+q^(1/2)+C\", \"Check the second term again. Note that $\\\\sqrt{q}=q^{\\\\frac{1}{2}}$ but this has not actually been integrated.\"],\n [\"q^4/4+2*q^(1/2)+C\", \"Check the second term again. Note that $\\\\sqrt{q}=q^{\\\\frac{1}{2}}$ but this has not actually been integrated.\"],\n [\"q^4/4+2*q^(1/2)\", \"Check the second term again. Note that $\\\\sqrt{q}=q^{\\\\frac{1}{2}}$ but this has not actually been integrated.\"],\n [\"q^4/4+3/2*q^(3/2)+C\", \"Almost there! Check the second term again. It looks like you have multiplied by the new power.\"],\n [\"q^4/4+3/2*q^(3/2)\", \"Almost there! Check the second term again. It looks like you have multiplied by the new power.\"]\n ]\n\n\nparsed_malrules: \n map(\n [\"expr\":parse(x[0]),\"feedback\":x[1]],\n x,\n malrules\n )\n\nagree_malrules (Do the student's answer and the expected answer agree on each of the sets of variable values?):\n map(\n len(filter(not x ,x,map(\n try(\n resultsEqual(unset(question_definitions,eval(studentexpr,vars)),unset(question_definitions,eval(malrule[\"expr\"],vars)),settings[\"checkingType\"],settings[\"checkingAccuracy\"]),\n message,\n false\n ),\n vars,\n vset\n )))$\\int(q^3+\\sqrt{q})\\mathrm{dq}$

"}], "variablesTest": {"maxRuns": 100, "condition": ""}, "advice": "

Indefinite Integrals

", "name": "Indefinite Integrals Q5 2019 (custom feedback)", "variable_groups": [], "tags": [], "functions": {}, "statement": "

Solve the following indefinite integrals, using $C$ to represent an unknown constant.

", "variables": {"c": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(1..9 except a except b)", "name": "c"}, "d": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(1..8)", "name": "d"}, "f": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(1..8 except d)", "name": "f"}, "a": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(2..9)", "name": "a"}, "b": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(2..9 except a)", "name": "b"}}, "type": "question", "contributors": [{"name": "Clodagh Carroll", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/384/"}, {"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}]}]}], "contributors": [{"name": "Clodagh Carroll", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/384/"}, {"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}]}