// Numbas version: finer_feedback_settings {"name": "Simon's copy of Mean missing data", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "statement": "
Find the value of x given information about the mean
", "preamble": {"js": "", "css": ""}, "extensions": [], "parts": [{"unitTests": [], "scripts": {}, "marks": 0, "showCorrectAnswer": true, "gaps": [{"unitTests": [], "scripts": {}, "marks": 1, "showCorrectAnswer": true, "minValue": "{f}", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "mustBeReducedPC": 0, "correctAnswerFraction": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "allowFractions": false, "customMarkingAlgorithm": "", "maxValue": "{f}", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "type": "numberentry"}], "showFeedbackIcon": true, "prompt": "The mean of $\\var{a}, \\var{b}, \\var{c}, \\var{d}$ and $x$ is $\\var{mean}$, find the value of $x$.
\n$x=$[[0]]
", "stepsPenalty": "1", "steps": [{"unitTests": [], "variableReplacementStrategy": "originalfirst", "marks": 0, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "variableReplacements": [], "scripts": {}, "prompt": "If you know the mean of the values, you can work out the sum of all the values. Then use this to find the missing value.
", "type": "information", "showFeedbackIcon": true}], "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "sortAnswers": false, "type": "gapfill"}], "metadata": {"description": "rebelmaths
", "licence": "Creative Commons Attribution 4.0 International"}, "rulesets": {}, "ungrouped_variables": ["a", "b", "c", "d", "f", "mean", "g", "tot"], "tags": [], "advice": "Mean = $\\frac{\\text{sum of values}}{\\text{number of values}}$
\nRearranging gives:
\nSum of values = Mean $\\times$ number of values
\n\nSo for our example
\nSum of values = $\\var{mean} \\times 5 = \\var{5*mean}$
\n\nHence:
\n$\\var{a}+\\var{b}+\\var{c}+\\var{d}+x=\\var{5*mean}$
\n$\\var{tot}+x=\\var{g}$,
\n$x=\\var{g}-\\var{tot}$
\n$x=\\var{f}$
\n", "name": "Simon's copy of Mean missing data", "variables": {"g": {"name": "g", "group": "Ungrouped variables", "definition": "5*mean", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..9#1)", "description": "", "templateType": "randrange"}, "mean": {"name": "mean", "group": "Ungrouped variables", "definition": "(a+b+c+d+f)/5", "description": "", "templateType": "anything"}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "tot": {"name": "tot", "group": "Ungrouped variables", "definition": "a+b+c+d", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1..9#1)", "description": "", "templateType": "randrange"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}}, "functions": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "type": "question", "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}