// Numbas version: finer_feedback_settings {"name": "Simple Harmonic Motion Graph", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "
The graph shows the displacement, $x$ metres, of a particle at time $t$ seconds, moving with simple harmonic motion about a fixed origin.
\n{geogebra_applet('https://ggbm.at/bkfp2s97', defs, [])}
\n(You can use the tools to zoom in/out and pan around the graph if necessary!)
", "tags": [], "name": "Simple Harmonic Motion Graph", "variablesTest": {"condition": "", "maxRuns": "200"}, "functions": {"graph": {"parameters": [], "language": "jme", "definition": "", "type": "html"}}, "parts": [{"showFeedbackIcon": false, "scripts": {}, "sortAnswers": false, "showCorrectAnswer": true, "prompt": "What is the amplitude of the displacement?
\nAmplitude: [[0]] metres
", "gaps": [{"showFeedbackIcon": true, "allowFractions": true, "scripts": {}, "showCorrectAnswer": true, "maxValue": "{a}", "extendBaseMarkingAlgorithm": true, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "customMarkingAlgorithm": "", "mustBeReducedPC": 0, "variableReplacementStrategy": "originalfirst", "marks": 1, "unitTests": [], "type": "numberentry", "minValue": "{a}", "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacements": []}], "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "marks": 0, "unitTests": [], "type": "gapfill", "variableReplacements": []}, {"showFeedbackIcon": true, "scripts": {}, "sortAnswers": false, "showCorrectAnswer": true, "prompt": "What is the period of oscillation for the particle?
\nPeriod = [[0]] seconds
", "gaps": [{"showFeedbackIcon": true, "allowFractions": false, "scripts": {}, "showCorrectAnswer": true, "maxValue": "P", "extendBaseMarkingAlgorithm": true, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "customMarkingAlgorithm": "", "mustBeReducedPC": 0, "variableReplacementStrategy": "originalfirst", "marks": 1, "unitTests": [], "type": "numberentry", "minValue": "P", "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacements": []}], "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "marks": 0, "unitTests": [], "type": "gapfill", "variableReplacements": []}, {"showFeedbackIcon": true, "scripts": {}, "sortAnswers": false, "showCorrectAnswer": true, "prompt": "What is the angular frequency for this system?
\nAngular frequency = [[0]] rad/s (Exact value!)
", "gaps": [{"showFeedbackIcon": true, "answerSimplification": "all", "scripts": {}, "vsetRangePoints": 5, "answer": "2pi/{P}", "showCorrectAnswer": true, "checkVariableNames": false, "extendBaseMarkingAlgorithm": true, "vsetRange": [0, 1], "checkingAccuracy": 0.001, "expectedVariableNames": [], "customMarkingAlgorithm": "", "failureRate": 1, "variableReplacementStrategy": "originalfirst", "marks": 1, "unitTests": [], "type": "jme", "showPreview": true, "checkingType": "absdiff", "variableReplacements": []}], "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "marks": 0, "unitTests": [], "type": "gapfill", "variableReplacements": []}], "variable_groups": [], "variables": {"f": {"templateType": "anything", "definition": "c*pi/(2w)", "name": "f", "description": "", "group": "Ungrouped variables"}, "w": {"templateType": "anything", "definition": "2*pi/P", "name": "w", "description": "", "group": "Ungrouped variables"}, "P": {"templateType": "anything", "definition": "random(1..6)", "name": "P", "description": "", "group": "Ungrouped variables"}, "a": {"templateType": "anything", "definition": "random(1..8#0.2)", "name": "a", "description": "", "group": "Ungrouped variables"}, "d": {"templateType": "anything", "definition": "0", "name": "d", "description": "", "group": "Ungrouped variables"}, "c": {"templateType": "anything", "definition": "1.5", "name": "c", "description": "", "group": "Ungrouped variables"}, "defs": {"templateType": "anything", "definition": "[\n ['a',a],\n ['b',w],\n ['c',f],\n ['d',d]\n]", "name": "defs", "description": "Sets the internal values of y = a*cos(wx+c)+d
", "group": "Ungrouped variables"}}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "This uses an embedded Geogebra SHM graph with coefficients set by NUMBAS.
"}, "rulesets": {}, "extensions": ["geogebra"], "preamble": {"js": "", "css": ""}, "ungrouped_variables": ["defs", "a", "w", "c", "P", "d", "f"], "advice": "(a) Amplitude: measure the height of the peak from the middle of the wave ($x=0$ line).
\n(b) Period: measure the horizontal distance from one peak to the next. The period, in seconds, is the time taken for the particle is undergo one oscillation.
\n(c) Angular frequency, $\\omega$, is defined as \\[ \\omega = \\frac{2\\pi}{P} \\] where $P$ is the period of oscillation.
", "type": "question", "contributors": [{"name": "Adrian Jannetta", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/164/"}]}]}], "contributors": [{"name": "Adrian Jannetta", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/164/"}]}