// Numbas version: finer_feedback_settings {"name": "Simon's copy of Vector equation of a line,", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "

(a)

\n

\\[\\boldsymbol{r} = \\var{vector(a,b,g)} + \\lambda \\var{vector(c,d,f)}\\]

\n

(b)

\n

\\[\\boldsymbol{r} = \\var{vector(a1,b1,g1)} + \\mu \\var{vector(c1,d1,f1)}\\]

\n

(c)

\n

Since the two lines intersect at $\\boldsymbol{P}$, we must have that 

\n

\\[ \\var{vector(a,b,g)} + \\lambda \\var{vector(c,d,f)} = \\var{vector(a1,b1,g1)} + \\mu \\var{vector(c1,d1,f1)}\\]

\n

at point $\\boldsymbol{P}$

\n

\n

Hence we can write out a set of simultaneous equations for each component of $\\boldsymbol{P}$:

\n

\\begin{align}
\\simplify[]{{a} + lambda*{c}} &= \\simplify[]{{a1} + mu*{c1}} \\\\
\\simplify[]{{b} + lambda*{d}} &= \\simplify[]{{b1} + mu*{d1}} \\\\
\\simplify[]{{g} + lambda*{f}} &= \\simplify[]{{g1} + mu*{f1}}
\\end{align}

\n

By solving these equations, we find that the point $\\boldsymbol{P}$ common to both lines is given by $\\lambda=\\var{lam},\\mu=\\var{mu}$, and

\n

\\[\\boldsymbol{P} = \\var{p}\\]

", "ungrouped_variables": ["a", "a1", "al", "b", "b1", "be", "c", "c1", "d", "d1", "f", "f1", "g", "g1", "ga", "lam", "mu", "s1", "s2", "s3", "s4", "v", "w", "p"], "variables": {"b": {"description": "", "templateType": "anything", "name": "b", "group": "Ungrouped variables", "definition": "s2*random(2..9)"}, "s2": {"description": "", "templateType": "anything", "name": "s2", "group": "Ungrouped variables", "definition": "random(1,-1)"}, "be": {"description": "", "templateType": "anything", "name": "be", "group": "Ungrouped variables", "definition": "random(-5..5)"}, "p": {"description": "

Point of intersection of the two lines

", "templateType": "anything", "name": "p", "group": "Ungrouped variables", "definition": "vector(a,b,g)+lam*vector(c,d,f)"}, "mu": {"description": "", "templateType": "anything", "name": "mu", "group": "Ungrouped variables", "definition": "s2*random(1..5)"}, "g": {"description": "", "templateType": "anything", "name": "g", "group": "Ungrouped variables", "definition": "s1*random(2..9)"}, "w": {"description": "", "templateType": "anything", "name": "w", "group": "Ungrouped variables", "definition": "matrix([c,d,f])"}, "d": {"description": "", "templateType": "anything", "name": "d", "group": "Ungrouped variables", "definition": "s4*random(2..9)"}, "f1": {"description": "", "templateType": "anything", "name": "f1", "group": "Ungrouped variables", "definition": "ga"}, "a": {"description": "", "templateType": "anything", "name": "a", "group": "Ungrouped variables", "definition": "s1*random(2..9)"}, "lam": {"description": "", "templateType": "anything", "name": "lam", "group": "Ungrouped variables", "definition": "s3*random(1..5)"}, "b1": {"description": "", "templateType": "anything", "name": "b1", "group": "Ungrouped variables", "definition": "b+lam*d-mu*be"}, "s3": {"description": "", "templateType": "anything", "name": "s3", "group": "Ungrouped variables", "definition": "random(1,-1)"}, "v": {"description": "", "templateType": "anything", "name": "v", "group": "Ungrouped variables", "definition": "matrix([a,b,g])"}, "ga": {"description": "", "templateType": "anything", "name": "ga", "group": "Ungrouped variables", "definition": "random(-5..5)"}, "d1": {"description": "", "templateType": "anything", "name": "d1", "group": "Ungrouped variables", "definition": "be"}, "c1": {"description": "", "templateType": "anything", "name": "c1", "group": "Ungrouped variables", "definition": "al"}, "f": {"description": "", "templateType": "anything", "name": "f", "group": "Ungrouped variables", "definition": "random(2..9)"}, "a1": {"description": "", "templateType": "anything", "name": "a1", "group": "Ungrouped variables", "definition": "a+lam*c-mu*al"}, "g1": {"description": "", "templateType": "anything", "name": "g1", "group": "Ungrouped variables", "definition": "g+lam*f-mu*ga"}, "c": {"description": "", "templateType": "anything", "name": "c", "group": "Ungrouped variables", "definition": "s3*random(2..9)"}, "al": {"description": "", "templateType": "anything", "name": "al", "group": "Ungrouped variables", "definition": "random(-5..5)"}, "s1": {"description": "", "templateType": "anything", "name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)"}, "s4": {"description": "", "templateType": "anything", "name": "s4", "group": "Ungrouped variables", "definition": "random(1,-1)"}}, "tags": [], "extensions": [], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "name": "Simon's copy of Vector equation of a line,", "functions": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "metadata": {"description": "

Given two 3 dim vectors, find vector equation of line through one vector in the direction of another. Find two such lines and their point of intersection.

", "licence": "Creative Commons Attribution 4.0 International"}, "variable_groups": [], "preamble": {"js": "", "css": ""}, "parts": [{"marks": 0, "variableReplacements": [], "gaps": [{"allowFractions": true, "allowResize": false, "customMarkingAlgorithm": "", "marks": "0.75", "variableReplacements": [], "numRows": "3", "showFeedbackIcon": true, "numColumns": 1, "correctAnswer": "vector(a,b,g)", "extendBaseMarkingAlgorithm": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "correctAnswerFractions": false, "showCorrectAnswer": true, "type": "matrix", "tolerance": 0, "unitTests": [], "markPerCell": false}, {"allowFractions": true, "allowResize": false, "customMarkingAlgorithm": "", "marks": "0.75", "variableReplacements": [], "numRows": "3", "showFeedbackIcon": true, "numColumns": 1, "correctAnswer": "vector(c,d,f)", "extendBaseMarkingAlgorithm": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "correctAnswerFractions": false, "showCorrectAnswer": true, "type": "matrix", "tolerance": 0, "unitTests": [], "markPerCell": false}], "customMarkingAlgorithm": "", "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "prompt": "

Find the vector equation of Line 1 which goes through the point $\\boldsymbol{x_0}$ in the direction of the vector $\\boldsymbol{v}$.

\n

Input the vector equation in the form:

\n

\\[\\boldsymbol{r} = \\begin{pmatrix} a_1 \\\\ a_2 \\\\ a_3 \\end{pmatrix} + \\lambda \\begin{pmatrix} b_1 \\\\ b_2 \\\\ b_3 \\end{pmatrix} \\]

\n

such that $\\boldsymbol{r} = \\boldsymbol{x_0}$ when $\\lambda=0$ and $\\boldsymbol{r}=\\boldsymbol{x_0}+\\boldsymbol{v}$ when $\\lambda=1$ by filling in the appropriate fields below:

\n

$ \\boldsymbol{r} = $ [[0]] $ + \\lambda $ [[1]]

", "sortAnswers": false, "showCorrectAnswer": true, "type": "gapfill", "unitTests": []}, {"marks": 0, "variableReplacements": [], "gaps": [{"allowFractions": true, "allowResize": false, "customMarkingAlgorithm": "", "marks": "0.75", "variableReplacements": [], "numRows": "3", "showFeedbackIcon": true, "numColumns": 1, "correctAnswer": "vector(a1,b1,g1)", "extendBaseMarkingAlgorithm": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "correctAnswerFractions": false, "showCorrectAnswer": true, "type": "matrix", "tolerance": 0, "unitTests": [], "markPerCell": false}, {"allowFractions": true, "allowResize": false, "customMarkingAlgorithm": "", "marks": "0.75", "variableReplacements": [], "numRows": "3", "showFeedbackIcon": true, "numColumns": 1, "correctAnswer": "vector(c1,d1,f1)", "extendBaseMarkingAlgorithm": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "correctAnswerFractions": false, "showCorrectAnswer": true, "type": "matrix", "tolerance": 0, "unitTests": [], "markPerCell": false}], "customMarkingAlgorithm": "", "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "prompt": "

Once again find the vector equation of Line 2 which goes through the point $\\boldsymbol{y_0}$ in the direction of the vector $\\boldsymbol{w}$ in the form

\n

\\[ \\boldsymbol{r} = \\begin{pmatrix} c_1 \\\\ c_2 \\\\ c_3 \\end{pmatrix} + \\mu \\begin{pmatrix} d_1 \\\\ d_2 \\\\ d_3 \\end{pmatrix} \\]

\n

such that $\\boldsymbol{r}=\\boldsymbol{C}$ when $\\mu=0$ and $\\boldsymbol{r=C+D}$ when $\\mu=1$ by filling in the appropriate fields below:

\n

$ \\boldsymbol{r} = $ [[0]] $ + \\mu $ [[1]]

", "sortAnswers": false, "showCorrectAnswer": true, "type": "gapfill", "unitTests": []}, {"marks": 0, "variableReplacements": [], "gaps": [{"allowFractions": true, "allowResize": false, "customMarkingAlgorithm": "", "marks": "3", "variableReplacements": [], "numRows": "3", "showFeedbackIcon": true, "numColumns": 1, "correctAnswer": "p", "extendBaseMarkingAlgorithm": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "correctAnswerFractions": false, "showCorrectAnswer": true, "type": "matrix", "tolerance": 0, "unitTests": [], "markPerCell": false}], "customMarkingAlgorithm": "", "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "prompt": "

You are told that Line 1 and Line 2 intersect in a point $\\boldsymbol{P}$.

\n

Find $\\boldsymbol{P}$.

\n

$\\boldsymbol{P} = $ [[0]]

", "sortAnswers": false, "showCorrectAnswer": true, "type": "gapfill", "unitTests": []}], "statement": "

You are given the vectors

\n

\\begin{align}
\\boldsymbol{x_0} &= \\var{vector(a,b,g)} , & \\boldsymbol{v} & = \\var{vector(c,d,f)}, \\\\[1em]
\\boldsymbol{y_0} &= \\var{vector(a1,b1,g1)}, & \\boldsymbol{w} &=\\var{vector(c1,d1,f1)}
\\end{align}

\n

in $\\mathbb{R^3}$.

", "type": "question", "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}