// Numbas version: exam_results_page_options {"name": "CA2 Block 1 Q4 2019", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "preventleave": false, "showfrontpage": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variablesTest": {"condition": "", "maxRuns": 100}, "metadata": {"description": "

Simple Indefinite Integrals

\n

", "licence": "Creative Commons Attribution 4.0 International"}, "ungrouped_variables": ["a", "c", "b", "d", "f"], "contributors": [{"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/384/", "name": "Clodagh Carroll"}, {"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/", "name": "Violeta CIT"}], "parts": [{"unitTests": [], "answer": "q^4/4+2/3q^(3/2)+C", "showFeedbackIcon": true, "customMarkingAlgorithm": "malrules:\n [\n [\"q^4/4+2/3q^(3/2)\", \"Don't forget to include the constant of integration!\",0.9],\n [\"q^4/4+q^(1/2)\", \"Check the second term again. Note that $\\\\sqrt{q}=q^{\\\\frac{1}{2}}$ but this has not actually been integrated.\",0],\n [\"q^4/4+q^(1/2)+C\", \"Check the second term again. Note that $\\\\sqrt{q}=q^{\\\\frac{1}{2}}$ but this has not actually been integrated.\",0],\n [\"q^4/4+2*q^(1/2)+C\", \"Check the second term again. Note that $\\\\sqrt{q}=q^{\\\\frac{1}{2}}$ but this has not actually been integrated.\",0],\n [\"q^4/4+2*q^(1/2)\", \"Check the second term again. Note that $\\\\sqrt{q}=q^{\\\\frac{1}{2}}$ but this has not actually been integrated.\",0],\n [\"q^4/4+3/2*q^(3/2)+C\", \"Almost there! Check the second term again. It looks like you have multiplied by the new power.\",0],\n [\"q^4/4+3/2*q^(3/2)\", \"Almost there! Check the second term again. It looks like you have multiplied by the new power.\",0]\n ]\n\n\nparsed_malrules: \n map(\n [\"expr\":parse(x[0]),\"feedback\":x[1],\"credit\":x[2]],\n x,\n malrules\n )\n\nagree_malrules (Do the student's answer and the expected answer agree on each of the sets of variable values?):\n map(\n len(filter(not x ,x,map(\n try(\n resultsEqual(unset(question_definitions,eval(studentexpr,vars)),unset(question_definitions,eval(malrule[\"expr\"],vars)),settings[\"checkingType\"],settings[\"checkingAccuracy\"]),\n message,\n false\n ),\n vars,\n vset\n )))$\\int(q^3+\\sqrt{q})\\mathrm{dq}$

", "checkingAccuracy": 0.001, "checkingType": "absdiff", "scripts": {}, "failureRate": 1, "checkVariableNames": false, "variableReplacements": [], "showPreview": true, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "vsetRange": [0, 1], "type": "jme", "expectedVariableNames": [], "extendBaseMarkingAlgorithm": true, "marks": 1}], "extensions": [], "advice": "

Indefinite Integrals

", "name": "CA2 Block 1 Q4 2019", "preamble": {"css": "", "js": ""}, "statement": "

Solve the following indefinite integrals, using $C$ to represent an unknown constant.

", "functions": {}, "tags": [], "variables": {"a": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "random(2..9)", "name": "a"}, "d": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "random(1..8)", "name": "d"}, "b": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "random(2..9 except a)", "name": "b"}, "f": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "random(1..8 except d)", "name": "f"}, "c": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "random(1..9 except a except b)", "name": "c"}}, "type": "question", "rulesets": {}}]}], "contributors": [{"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/384/", "name": "Clodagh Carroll"}, {"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/", "name": "Violeta CIT"}]}