// Numbas version: exam_results_page_options {"name": "Timur's copy of Vector addition by summing scalar components", "extensions": ["geogebra", "quantities", "weh"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "

\n

$R_x = \\Sigma F_x = \\var{scale FA[0]}+\\var{scale FB[0]}+\\var{scale FC[0]} =\\var{scale FR[0]}$ {units[1]}

\n

$R_y = \\Sigma F_y = \\var{scale FA[1]}+\\var{scale FB[1]}+\\var{scale FC[1]} =\\var{scale FR[1]}$ {units[1]}

\n

$R=\\sqrt{R_x^2 + R_y^2} = \\var{siground(resultant,4)}$

\n

$\\theta = \\tan^{-1}\\left(\\left|\\frac{R_y}{R_x}\\right| \\right) =$ {siground(degrees(arctan(FR[0]/FR[1])),4)}°

\n

", "statement": "

Three forces, A, B, and C are drawn to scale of 1 square = 1 unit squared.  Find the resultant by summing scalar components.

\n

{geogebra_applet('vpfnqe8q', [['fa',FA],['fb',FB],['fc',FC]])}

\n

", "variable_groups": [{"name": "Inputs", "variables": ["A1", "FA", "B1", "FB", "C1", "FC", "units", "debug", "D", "scale"]}, {"name": "Outputs", "variables": ["FR", "theta", "ref", "angle_from_ref", "resultant"]}], "functions": {}, "variablesTest": {"condition": "abs(FR) >=3", "maxRuns": "100"}, "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": "

Add three vectors by determining their scalar components and summing them.

"}, "preamble": {"css": "", "js": ""}, "variables": {"FC": {"group": "Inputs", "templateType": "anything", "definition": "vector(random(-5..5 except 0),random(-5..5 except 0))", "name": "FC", "description": ""}, "FB": {"group": "Inputs", "templateType": "anything", "definition": "vector(random(-5..5),random(-5..5 except 0))", "name": "FB", "description": ""}, "C1": {"group": "Inputs", "templateType": "anything", "definition": "vector(5,0)\n", "name": "C1", "description": "

Position of point C

"}, "ref": {"group": "Outputs", "templateType": "anything", "definition": "0", "name": "ref", "description": "

placeholder for reference axis

"}, "debug": {"group": "Inputs", "templateType": "anything", "definition": "false", "name": "debug", "description": ""}, "FR": {"group": "Outputs", "templateType": "anything", "definition": "FA + FB + FC", "name": "FR", "description": ""}, "units": {"group": "Inputs", "templateType": "anything", "definition": "random(['ft','lb'],['in','lb'],['cm','N'])", "name": "units", "description": ""}, "theta": {"group": "Outputs", "templateType": "anything", "definition": "degrees(atan2(FR[1],FR[0]))", "name": "theta", "description": ""}, "scale": {"group": "Inputs", "templateType": "anything", "definition": "random(0.1,0.2,0.5,2,4,5,10,20)", "name": "scale", "description": ""}, "FA": {"group": "Inputs", "templateType": "anything", "definition": "vector(random(-5..5 except 0),random(-5..5))", "name": "FA", "description": ""}, "angle_from_ref": {"group": "Outputs", "templateType": "anything", "definition": "let(ang,theta,\n[if(ang>180,ang-360,ang),\nif(ang>270,ang-450,if(ang < -90,ang+270,ang-90)),\nif(ang>0,ang-180,ang+180),\nif(ang>90,ang-270,90+ang)])", "name": "angle_from_ref", "description": ""}, "D": {"group": "Inputs", "templateType": "anything", "definition": "vector(0,-8)", "name": "D", "description": ""}, "A1": {"group": "Inputs", "templateType": "anything", "definition": "vector(-5,0)", "name": "A1", "description": "

Position of point A

"}, "B1": {"group": "Inputs", "templateType": "anything", "definition": "vector(0,0)\n", "name": "B1", "description": "

Position of point B

First, find the scalar components of the three vectors.

\n

$A_x =$ [[0]]  $B_x =$ [[2]]  $C_x =$ [[4]]

\n

$A_y =$ [[1]]  $B_y =$ [[3]]  $C_y =$ [[5]]

", "variableReplacementStrategy": "originalfirst", "scripts": {}, "customMarkingAlgorithm": ""}, {"showCorrectAnswer": true, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "type": "numberentry", "mustBeReducedPC": 0, "variableReplacements": [], "mustBeReduced": false, "marks": 1, "unitTests": [], "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "scripts": {}, "maxValue": "{FA[0]}+{FB[0]}+{FC[0]}", "showFeedbackIcon": true, "correctAnswerStyle": "plain", "notationStyles": ["plain", "en", "si-en"], "minValue": "{FA[0]}+{FB[0]}+{FC[0]}"}, {"showCorrectAnswer": true, "allowFractions": false, "correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "type": "numberentry", "mustBeReducedPC": 0, "variableReplacements": [], "mustBeReduced": false, "marks": 1, "unitTests": [], "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "scripts": {}, "maxValue": "{FA[1]}+{FB[1]}+{FC[1]}", "showFeedbackIcon": true, "correctAnswerStyle": "plain", "notationStyles": ["plain", "en", "si-en"], "minValue": "{FA[1]}+{FB[1]}+{FC[1]}"}], "sortAnswers": false, "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "type": "gapfill", "variableReplacements": [], "marks": 0, "unitTests": [], "prompt": "

Find the sum of the three vectors R, by adding the scalar components.

\n

$R_x = A_x + B_x + C_x =$ [[0]]

\n

$R_y = A_y + B_y + C_y =$ [[1]]

", "variableReplacementStrategy": "originalfirst", "scripts": {}, "customMarkingAlgorithm": ""}], "extensions": ["geogebra", "quantities", "weh"], "tags": [], "rulesets": {}, "ungrouped_variables": [], "type": "question", "contributors": [{"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}, {"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}, {"name": "Timur Zaripov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3272/"}]}]}], "contributors": [{"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}, {"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}, {"name": "Timur Zaripov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3272/"}]}