// Numbas version: exam_results_page_options {"name": "Terry's copy of Expanding a binomial product (monic factors)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "", "statement": "

Expand and simplify the following.

", "preamble": {"css": "", "js": ""}, "functions": {}, "variablesTest": {"condition": "", "maxRuns": "127"}, "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": ""}, "variable_groups": [], "variables": {"b": {"group": "Ungrouped variables", "templateType": "anything", "definition": "shuffle(-12..12 except 0)[0..4]", "name": "b", "description": ""}, "a": {"group": "Ungrouped variables", "templateType": "anything", "definition": "shuffle(-12..12 except 0)[0..4]", "name": "a", "description": ""}}, "name": "Terry's copy of Expanding a binomial product (monic factors)", "parts": [{"showCorrectAnswer": true, "gaps": [{"checkingType": "absdiff", "notallowed": {"message": "

", "showStrings": false, "partialCredit": 0, "strings": ["(", ")"]}, "checkingAccuracy": 0.001, "failureRate": 1, "variableReplacementStrategy": "originalfirst", "vsetRange": [0, 1], "showCorrectAnswer": true, "type": "jme", "answer": "x^2+{a[0]+b[0]}x+{a[0]*b[0]}", "variableReplacements": [], "scripts": {}, "marks": 1, "unitTests": [], "showPreview": true, "extendBaseMarkingAlgorithm": true, "checkVariableNames": true, "customMarkingAlgorithm": "", "expectedVariableNames": ["x"], "vsetRangePoints": 5, "showFeedbackIcon": true}], "sortAnswers": false, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "variableReplacements": [], "steps": [{"unitTests": [], "showCorrectAnswer": true, "prompt": "

Method 1 (the distributive law)

\n

We expand \$\\simplify{(x+{a[0]})(x+{b[0]})}\$ one bracket at a time.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 \$\\simplify{(x+{a[0]})(x+{b[0]})}\$ \$=\$ \n\$\\simplify{x(x+{b[0]})+{a[0]}(x+{b[0]})}\$\n \n          (each term in one bracket times the entire other bracket)\n \$=\$ \$\\simplify{x^2+{b[0]}x+{a[0]}x+{a[0]*b[0]}}\$ (use the distributive law on each bracket) \$=\$ \$\\simplify{x^2+{b[0]+a[0]}x+{a[0]*b[0]}}\$ (collect like terms)
\n

Method 2 (FOIL)

\n

Multiply the First terms in each bracket, then the Outer terms, then the Inner terms and then the Last terms. Add them all together.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 \$\\simplify{(x+{a[0]})(x+{b[0]})}\$ \$=\$ \n\$\\simplify[basic]{x^2+{b[0]}x+{a[0]}x+{a[0]*b[0]}}\$\n \n          (First, Outer, Inner, Last)\n \$=\$ \$\\simplify{x^2+{b[0]+a[0]}x+{a[0]*b[0]}}\$ (collect like terms)
", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "scripts": {}, "type": "information", "showFeedbackIcon": true, "variableReplacements": [], "marks": 0, "customMarkingAlgorithm": ""}], "marks": 0, "stepsPenalty": "1", "unitTests": [], "prompt": "

\$\\simplify{(x+{a[0]})(x+{b[0]})}\$ = [[0]]

\n

\n

", "extendBaseMarkingAlgorithm": true, "scripts": {}, "customMarkingAlgorithm": ""}, {"showCorrectAnswer": true, "gaps": [{"checkingType": "absdiff", "notallowed": {"message": "

", "showStrings": false, "partialCredit": 0, "strings": ["(", ")"]}, "checkingAccuracy": 0.001, "failureRate": 1, "variableReplacementStrategy": "originalfirst", "vsetRange": [0, 1], "showCorrectAnswer": true, "type": "jme", "answer": "x^2+{a[1]+b[1]}x+{a[1]*b[1]}", "variableReplacements": [], "scripts": {}, "marks": 1, "unitTests": [], "showPreview": true, "extendBaseMarkingAlgorithm": true, "checkVariableNames": true, "customMarkingAlgorithm": "", "expectedVariableNames": ["x"], "vsetRangePoints": 5, "showFeedbackIcon": true}], "sortAnswers": false, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "variableReplacements": [], "steps": [{"unitTests": [], "showCorrectAnswer": true, "prompt": "

Method 1 (the distributive law)

\n

We expand \$\\simplify{(x+{a[1]})(x+{b[1]})}\$ one bracket at a time.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 \$\\simplify{(x+{a[1]})(x+{b[1]})}\$ \$=\$ \n\$\\simplify{x(x+{b[1]})+{a[1]}(x+{b[1]})}\$\n \n          (each term in one bracket times the entire other bracket)\n \$=\$ \$\\simplify{x^2+{b[1]}x+{a[1]}x+{a[1]*b[1]}}\$ (use the distributive law on each bracket) \$=\$ \$\\simplify{x^2+{b[1]+a[1]}x+{a[1]*b[1]}}\$ (collect like terms)
\n

Method 2 (FOIL)

\n

Multiply the First terms in each bracket, then the Outer terms, then the Inner terms and then the Last terms. Add them all together.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 \$\\simplify{(x+{a[1]})(x+{b[1]})}\$ \$=\$ \n\$\\simplify[basic]{x^2+{b[1]}x+{a[1]}x+{a[1]*b[1]}}\$\n \n          (First, Outer, Inner, Last)\n \$=\$ \$\\simplify{x^2+{b[1]+a[1]}x+{a[1]*b[1]}}\$ (collect like terms)
", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "scripts": {}, "type": "information", "showFeedbackIcon": true, "variableReplacements": [], "marks": 0, "customMarkingAlgorithm": ""}], "marks": 0, "stepsPenalty": "1", "unitTests": [], "prompt": "

\$\\simplify{(x+{a[1]})(x+{b[1]})}\$ = [[0]]

\n

\n

", "extendBaseMarkingAlgorithm": true, "scripts": {}, "customMarkingAlgorithm": ""}, {"showCorrectAnswer": true, "gaps": [{"checkingType": "absdiff", "notallowed": {"message": "

", "showStrings": false, "partialCredit": 0, "strings": ["(", ")"]}, "checkingAccuracy": 0.001, "failureRate": 1, "variableReplacementStrategy": "originalfirst", "vsetRange": [0, 1], "showCorrectAnswer": true, "type": "jme", "answer": "m^2+{a[2]+b[2]}m+{a[2]*b[2]}", "variableReplacements": [], "scripts": {}, "marks": 1, "unitTests": [], "showPreview": true, "extendBaseMarkingAlgorithm": true, "checkVariableNames": true, "customMarkingAlgorithm": "", "expectedVariableNames": ["m"], "vsetRangePoints": 5, "showFeedbackIcon": true}], "sortAnswers": false, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "variableReplacements": [], "steps": [{"unitTests": [], "showCorrectAnswer": true, "prompt": "

Method 1 (the distributive law)

\n

We expand \$\\simplify{(m+{a[2]})(m+{b[2]})}\$ one bracket at a time.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 \$\\simplify{(m+{a[2]})(m+{b[2]})}\$ \$=\$ \n\$\\simplify{m(m+{b[2]})+{a[2]}(m+{b[2]})}\$\n \n          (each term in one bracket times the entire other bracket)\n \$=\$ \$\\simplify{m^2+{b[2]}m+{a[2]}m+{a[2]*b[2]}}\$ (use the distributive law on each bracket) \$=\$ \$\\simplify{m^2+{b[2]+a[2]}m+{a[2]*b[2]}}\$ (collect like terms)
\n

Method 2 (FOIL)

\n

Multiply the First terms in each bracket, then the Outer terms, then the Inner terms and then the Last terms. Add them all together.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 \$\\simplify{(m+{a[2]})(m+{b[2]})}\$ \$=\$ \n\$\\simplify[basic]{m^2+{b[2]}m+{a[2]}m+{a[2]*b[2]}}\$\n \n          (First, Outer, Inner, Last)\n \$=\$ \$\\simplify{m^2+{b[2]+a[2]}m+{a[2]*b[2]}}\$ (collect like terms)
", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "scripts": {}, "type": "information", "showFeedbackIcon": true, "variableReplacements": [], "marks": 0, "customMarkingAlgorithm": ""}], "marks": 0, "stepsPenalty": "1", "unitTests": [], "prompt": "

\$\\simplify{(m+{a[2]})(m+{b[2]})}\$ = [[0]]

\n

\n

", "extendBaseMarkingAlgorithm": true, "scripts": {}, "customMarkingAlgorithm": ""}, {"showCorrectAnswer": true, "gaps": [{"checkingType": "absdiff", "notallowed": {"message": "

", "showStrings": false, "partialCredit": 0, "strings": ["(", ")"]}, "checkingAccuracy": 0.001, "failureRate": 1, "variableReplacementStrategy": "originalfirst", "vsetRange": [0, 1], "showCorrectAnswer": true, "type": "jme", "answer": "t^2+{a[3]+b[3]}t+{a[3]*b[3]}", "variableReplacements": [], "scripts": {}, "marks": 1, "unitTests": [], "showPreview": true, "extendBaseMarkingAlgorithm": true, "checkVariableNames": true, "customMarkingAlgorithm": "", "expectedVariableNames": ["t"], "vsetRangePoints": 5, "showFeedbackIcon": true}], "sortAnswers": false, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "variableReplacements": [], "steps": [{"unitTests": [], "showCorrectAnswer": true, "prompt": "

Method 1 (the distributive law)

\n

We expand \$\\simplify{(t+{a[3]})(t+{b[3]})}\$ one bracket at a time.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 \$\\simplify{(t+{a[3]})(t+{b[3]})}\$ \$=\$ \n\$\\simplify{t(t+{b[3]})+{a[3]}(t+{b[3]})}\$\n \n          (each term in one bracket times the entire other bracket)\n \$=\$ \$\\simplify{t^2+{b[3]}t+{a[3]}t+{a[3]*b[3]}}\$ (use the distributive law on each bracket) \$=\$ \$\\simplify{t^2+{b[3]+a[3]}t+{a[3]*b[3]}}\$ \n\n          (collect like terms)\n
\n

Method 2 (FOIL)

\n

Multiply the First terms in each bracket, then the Outer terms, then the Inner terms and then the Last terms. Add them all together.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 \$\\simplify{(t+{a[3]})(t+{b[3]})}\$ \$=\$ \n\$\\simplify[basic]{t^2+{b[3]}t+{a[3]}t+{a[3]*b[3]}}\$\n \n          (First, Outer, Inner, Last)\n \$=\$ \$\\simplify{t^2+{b[3]+a[3]}t+{a[3]*b[3]}}\$ (collect like terms)
", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "scripts": {}, "type": "information", "showFeedbackIcon": true, "variableReplacements": [], "marks": 0, "customMarkingAlgorithm": ""}], "marks": 0, "stepsPenalty": "1", "unitTests": [], "prompt": "

\$\\simplify{(t+{a[3]})(t+{b[3]})}\$ = [[0]]

\n

\n

", "extendBaseMarkingAlgorithm": true, "scripts": {}, "customMarkingAlgorithm": ""}], "extensions": [], "tags": ["binomial", "binomial product", "distributive law", "expanding", "Factorisation", "factorisation", "Factors", "factors", "monic", "quadratic"], "rulesets": {}, "ungrouped_variables": ["a", "b"], "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Terry Young", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3130/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Terry Young", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3130/"}]}