// Numbas version: finer_feedback_settings {"name": "Terry's copy of Simultaneous equations: linear and quadratic, two points", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"type": "question", "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "pickQuestions": 0, "name": ""}], "variable_groups": [], "variables": {"sroots": {"group": "Ungrouped variables", "name": "sroots", "definition": "-root1-root2", "templateType": "anything", "description": ""}, "ansy2": {"group": "Ungrouped variables", "name": "ansy2", "definition": "grad*root2+yint", "templateType": "anything", "description": ""}, "root1": {"group": "Ungrouped variables", "name": "root1", "definition": "roots[0]", "templateType": "anything", "description": ""}, "grad": {"group": "Ungrouped variables", "name": "grad", "definition": "random(-6..6 except 0)", "templateType": "anything", "description": ""}, "roots": {"group": "Ungrouped variables", "name": "roots", "definition": "sort(shuffle(-12..12)[0..2])", "templateType": "anything", "description": ""}, "quadccoeff": {"group": "Ungrouped variables", "name": "quadccoeff", "definition": "proots+yint", "templateType": "anything", "description": ""}, "yint": {"group": "Ungrouped variables", "name": "yint", "definition": "random(-6..6 except 0)", "templateType": "anything", "description": ""}, "proots": {"group": "Ungrouped variables", "name": "proots", "definition": "root1*root2", "templateType": "anything", "description": ""}, "root2": {"group": "Ungrouped variables", "name": "root2", "definition": "roots[1]", "templateType": "anything", "description": ""}, "ansy1": {"group": "Ungrouped variables", "name": "ansy1", "definition": "grad*root1+yint", "templateType": "anything", "description": ""}, "quadxcoeff": {"group": "Ungrouped variables", "name": "quadxcoeff", "definition": "sroots+grad", "templateType": "anything", "description": ""}}, "showQuestionGroupNames": false, "preamble": {"js": "", "css": ""}, "tags": ["algebra", "equations", "quadratic", "Simultaneous equations", "simultaneous equations", "solving equations", "Solving equations", "system of equations"], "name": "Terry's copy of Simultaneous equations: linear and quadratic, two points", "rulesets": {}, "statement": "", "ungrouped_variables": ["roots", "root1", "root2", "grad", "sroots", "proots", "yint", "quadxcoeff", "quadccoeff", "ansy1", "ansy2"], "functions": {}, "parts": [{"gaps": [{"allowFractions": true, "maxValue": "root1", "variableReplacements": [], "correctAnswerFraction": false, "marks": 1, "type": "numberentry", "showCorrectAnswer": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "minValue": "root1", "showPrecisionHint": false}, {"allowFractions": true, "maxValue": "ansy1", "variableReplacements": [], "correctAnswerFraction": true, "marks": 1, "type": "numberentry", "showCorrectAnswer": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "minValue": "ansy1", "showPrecisionHint": false}, {"allowFractions": true, "maxValue": "root2", "variableReplacements": [], "correctAnswerFraction": false, "marks": 1, "type": "numberentry", "showCorrectAnswer": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "minValue": "root2", "showPrecisionHint": false}, {"allowFractions": true, "maxValue": "ansy2", "variableReplacements": [], "correctAnswerFraction": true, "marks": 1, "type": "numberentry", "showCorrectAnswer": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "minValue": "ansy2", "showPrecisionHint": false}], "type": "gapfill", "steps": [{"type": "information", "variableReplacements": [], "marks": 0, "showCorrectAnswer": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "prompt": "
There are many ways to solve these equations simultaneously. Here is one method.
\n$y$ | \n$=$ | \n$\\simplify{{grad}x+{yint}}$ | \n$(1)$ | \n
$y$ | \n$=$ | \n$\\simplify{x^2+{quadxcoeff}x+{quadccoeff}}$ | \n$(2)$ | \n
Substitute the expression for $y$ given in $(1)$ into $(2)$:
\\[\\simplify{{grad}x+{yint} =x^2+{quadxcoeff}x+{quadccoeff}}\\]
Since we have a quadratic here we get everything onto one side:
\\[0=\\simplify{x^2+{sroots}x+{proots}}\\]
There are various ways to solve a quadratic, in this particular case we can factorise the quadratic:
\n\\[(\\simplify{x-{root1}})(\\simplify{x-{root2}})=0\\]
\nTherefore, $x=\\var{root1},\\,\\var{root2}$.
\n
Now for $x=\\var{root1}$, we can determine the corresponding $y$ value by substituting $x=\\var{root1}$ into either equation $(1)$ or $(2)$. Below we substitute into $(1)$:
$y$ | \n$=$ | \n$\\simplify[!collectnumbers]{{grad}({root1})+{yint}}$ | \n
\n | $=$ | \n$\\var{ansy1}$ | \n
Now for $x=\\var{root2}$, so we can determine the corresponding $y$ value by substituting $x=\\var{root2}$ into either equation $(1)$ or $(2)$. Below we substitute into $(1)$:
\n$y$ | \n$=$ | \n$\\simplify[!collectnumbers]{{grad}({root2})+{yint}}$ | \n
\n | $=$ | \n$\\var{ansy2}$ | \n
Therefore the values that satisfy equations $(1)$ and $(2)$ are $x_1=\\var{root1}$, $y_1=\\var{ansy1}$ and $x_2=\\var{root2}$, $y_2=\\var{ansy2}$.
\nIn other words, the two curves intersect at the points $(\\var{root1},\\var{ansy1})$ and $(\\var{root2},\\var{ansy2})$.
"}], "variableReplacements": [], "stepsPenalty": "2", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "variableReplacementStrategy": "originalfirst", "prompt": "Find the $x$ and $y$ values that satisfy both of the following equations. That is, find the points of intersection of the two curves.
\n$y$ | \n$=$ | \n$\\simplify{{grad}x+{yint}}$ | \n$(1)$ | \n
$y$ | \n$=$ | \n$\\simplify{x^2+{quadxcoeff}x+{quadccoeff}}$ | \n$(2)$ | \n
$x_1=$ [[0]], $y_1=$ [[1]] and $x_2=$ [[2]], $y_2=$ [[3]]
\nNote: To input your answer please ensure that $x_1<x_2$.
\n"}], "variablesTest": {"maxRuns": 100, "condition": ""}, "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "notes": ""}, "advice": "", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Terry Young", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3130/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Terry Young", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3130/"}]}