// Numbas version: exam_results_page_options {"name": "NC Math 4 U1L1 Graphing Linear Equation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"maxRuns": 100, "condition": ""}, "rulesets": {}, "advice": "", "tags": [], "extensions": [], "statement": "

You are given the equation $y=\\simplify[all,fractionNumbers]{{a}x+{b}}$. 

", "preamble": {"css": "", "js": ""}, "parts": [{"showCellAnswerState": true, "useCustomName": false, "prompt": "

This equation, or its graph, can be described as a

", "scripts": {}, "showCorrectAnswer": true, "unitTests": [], "distractors": ["", "", "", "", "", ""], "showFeedbackIcon": true, "stepsPenalty": "1", "maxMarks": 0, "displayType": "radiogroup", "minMarks": 0, "choices": ["

straight line

", "

parabola/quadratic

", "

cubic

", "

hyperbola

", "

circle

", "

quartic

"], "shuffleChoices": true, "marks": 0, "matrix": ["1", "0", "0", 0, 0, 0], "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "customName": "", "adaptiveMarkingPenalty": 0, "displayColumns": 0, "variableReplacementStrategy": "originalfirst", "steps": [{"marks": 0, "useCustomName": false, "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "customName": "", "adaptiveMarkingPenalty": 0, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "prompt": "

An equation of the form $y=ax+b$ is known as a linear equation, and its graph is a straight line. 

", "unitTests": [], "scripts": {}, "type": "information", "customMarkingAlgorithm": ""}], "type": "1_n_2", "customMarkingAlgorithm": ""}, {"showCellAnswerState": true, "useCustomName": false, "prompt": "

As we move to the far left of the graph, the graph

", "scripts": {}, "showCorrectAnswer": true, "unitTests": [], "showFeedbackIcon": true, "stepsPenalty": "1", "maxMarks": 0, "displayType": "radiogroup", "minMarks": 0, "choices": ["

goes upwards.

", "

goes downwards.

"], "shuffleChoices": false, "marks": 0, "matrix": "lleading", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "customName": "", "adaptiveMarkingPenalty": 0, "displayColumns": 0, "variableReplacementStrategy": "originalfirst", "steps": [{"marks": 0, "useCustomName": false, "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "customName": "", "adaptiveMarkingPenalty": 0, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "prompt": "

What happens to the graph as you go far to the left or right is called the long term behaviour of a graph.

\n

The leading term (the term that includes the highest power) determines the long term behaviour of a polynomial. In our polynomial the leading term is $\\simplify[all,fractionNumbers]{{a}x}$.

\n

As we go far to the left of the graph $x$ is negative, and so $\\simplify[all,fractionNumbers]{{a}x}$ is negative. That is, the graph goes downwards. is positive. That is, the graph goes upwards. 

\n

", "unitTests": [], "scripts": {}, "type": "information", "customMarkingAlgorithm": ""}], "type": "1_n_2", "customMarkingAlgorithm": ""}, {"showCellAnswerState": true, "useCustomName": false, "prompt": "

As we move to the far right of the graph, the graph

", "scripts": {}, "showCorrectAnswer": true, "unitTests": [], "showFeedbackIcon": true, "stepsPenalty": "1", "maxMarks": 0, "displayType": "radiogroup", "minMarks": 0, "choices": ["

goes upwards.

", "

goes downwards.

"], "shuffleChoices": false, "marks": 0, "matrix": "rleading", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "customName": "", "adaptiveMarkingPenalty": 0, "displayColumns": 0, "variableReplacementStrategy": "originalfirst", "steps": [{"marks": 0, "useCustomName": false, "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "customName": "", "adaptiveMarkingPenalty": 0, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "prompt": "

What happens to the graph as you go far to the left or right is called the long term behaviour of a graph.

\n

The leading term (the term that includes the highest power) determines the long term behaviour of a polynomial. In our polynomial the leading term is $\\simplify[all,fractionNumbers]{{a}x}$.

\n

As we go far to the right of the graph $x$ is positive, and so $\\simplify[all,fractionNumbers]{{a}x}$ is negative. That is, the graph goes downwards. is positive. That is, the graph goes upwards. 

\n

", "unitTests": [], "scripts": {}, "type": "information", "customMarkingAlgorithm": ""}], "type": "1_n_2", "customMarkingAlgorithm": ""}, {"sortAnswers": false, "marks": 0, "gaps": [{"mustBeReduced": false, "useCustomName": false, "notationStyles": ["plain", "en", "si-en"], "showFractionHint": true, "showCorrectAnswer": true, "unitTests": [], "mustBeReducedPC": 0, "showFeedbackIcon": true, "scripts": {}, "correctAnswerFraction": true, "minValue": "{b}", "marks": 1, "maxValue": "{b}", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "allowFractions": true, "customName": "", "adaptiveMarkingPenalty": 0, "variableReplacementStrategy": "originalfirst", "type": "numberentry", "customMarkingAlgorithm": "", "correctAnswerStyle": "plain"}], "useCustomName": false, "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "steps": [{"marks": 0, "useCustomName": false, "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "customName": "", "adaptiveMarkingPenalty": 0, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "prompt": "

The $y$-intercept is the value of $y$ when $x=0$, that is, the value of $y$ where the graph hits the $y$-axis. To find it, substitute $x=0$ into our equation:

\n

\\[y=\\simplify[unitFactor,basic,fractionNumbers]{{a}0+{b}}=\\var{b}.\\]

\n

", "unitTests": [], "scripts": {}, "type": "information", "customMarkingAlgorithm": ""}], "customName": "", "adaptiveMarkingPenalty": 0, "showCorrectAnswer": true, "stepsPenalty": "1", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "prompt": "

The $y$-intercept of the graph is $y=$[[0]].

", "unitTests": [], "scripts": {}, "type": "gapfill", "customMarkingAlgorithm": ""}, {"sortAnswers": false, "marks": 0, "gaps": [{"checkingType": "absdiff", "checkVariableNames": false, "valuegenerators": [], "useCustomName": false, "vsetRange": [0, 1], "checkingAccuracy": 0.001, "unitTests": [], "showFeedbackIcon": true, "answer": "set({xints})", "scripts": {}, "failureRate": 1, "showPreview": true, "showCorrectAnswer": true, "marks": 1, "vsetRangePoints": 5, "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "customName": "", "adaptiveMarkingPenalty": 0, "variableReplacementStrategy": "originalfirst", "type": "jme", "customMarkingAlgorithm": ""}], "useCustomName": false, "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "steps": [{"marks": 0, "useCustomName": false, "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "customName": "", "adaptiveMarkingPenalty": 0, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "prompt": "

Round your decimal to three decimal places.

\n

The $x$-intercept is the value of $x$ when $y=0$, that is, the value of $x$ where the graph hits the $x$-axis. To find it, substitute $y=0$ into our equation:

\n

\\[0=\\simplify[all,fractionNumbers]{{a}x+{b}} \\]

\n

\n

Solving this equation tells us that the $x$-intercept is $x=\\simplify[all, fractionNumbers]{{-b}/{a}}$.

", "unitTests": [], "scripts": {}, "type": "information", "customMarkingAlgorithm": ""}], "customName": "", "adaptiveMarkingPenalty": 0, "showCorrectAnswer": true, "stepsPenalty": "1", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "prompt": "

The set of $x$-intercepts of the graph would be [[0]].

\n

Note: If there are no intercepts, enter set()

\n

If there is only one intercept, say $x=5$, enter set(5)

\n

If there are two intercepts, say $x=-2$ and $x=1.5$, enter set(-2,1.5)

\n

If there are three intercepts, say $x=-2$, $x=1.5$ and $x=5$, enter set(-2,1.5,5)

\n

", "unitTests": [], "scripts": {}, "type": "gapfill", "customMarkingAlgorithm": ""}, {"sortAnswers": false, "marks": 0, "gaps": [{"mustBeReduced": false, "useCustomName": false, "notationStyles": ["plain", "en", "si-en"], "showFractionHint": true, "showCorrectAnswer": true, "unitTests": [], "mustBeReducedPC": 0, "showFeedbackIcon": true, "scripts": {}, "correctAnswerFraction": false, "minValue": "0", "marks": 1, "maxValue": "0", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "allowFractions": false, "customName": "", "adaptiveMarkingPenalty": 0, "variableReplacementStrategy": "originalfirst", "type": "numberentry", "customMarkingAlgorithm": "", "correctAnswerStyle": "plain"}], "useCustomName": false, "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "steps": [{"marks": 0, "useCustomName": false, "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "customName": "", "adaptiveMarkingPenalty": 0, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "prompt": "

A degree $n$ polynomial has at most $n-1$ bends in its graph.

", "unitTests": [], "scripts": {}, "type": "information", "customMarkingAlgorithm": ""}], "customName": "", "adaptiveMarkingPenalty": 0, "showCorrectAnswer": true, "stepsPenalty": "1", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "prompt": "

Given the degree of a polynomial is $1$, the maximum number of possible 'bends' or 'turns' in the graph is [[0]].

\n

", "unitTests": [], "scripts": {}, "type": "gapfill", "customMarkingAlgorithm": ""}], "name": "NC Math 4 U1L1 Graphing Linear Equation", "functions": {}, "ungrouped_variables": ["a", "b", "lleading", "rleading", "xints"], "variable_groups": [], "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": ""}, "variables": {"a": {"name": "a", "group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "random(-6..6 except 0)"}, "b": {"name": "b", "group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "random(-10..10)"}, "xints": {"name": "xints", "group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "precround(-b/a,3)"}, "lleading": {"name": "lleading", "group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "[if(a<0,1,0),if(a<0,0,1)]"}, "rleading": {"name": "rleading", "group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "[if(a>0,1,0),if(a>0,0,1)]"}}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Terry Young", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3130/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Terry Young", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3130/"}]}