// Numbas version: exam_results_page_options {"name": "Timothy's copy of Eigenvalues and one eigenvector of a 2x2 matrix", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"preamble": {"js": "", "css": ""}, "extensions": [], "statement": "

Given the matrix

\n

\\(A =\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\)

", "ungrouped_variables": ["b11", "c1", "a12", "k", "a21", "b22", "l1", "l2", "avg", "lambda1", "lambda2", "a11", "a22"], "variables": {"a22": {"description": "", "group": "Ungrouped variables", "definition": "b22-avg", "templateType": "anything", "name": "a22"}, "avg": {"description": "", "group": "Ungrouped variables", "definition": "precround((l1+l2)/2,0)", "templateType": "anything", "name": "avg"}, "k": {"description": "", "group": "Ungrouped variables", "definition": "random(1..6#1)", "templateType": "randrange", "name": "k"}, "a11": {"description": "", "group": "Ungrouped variables", "definition": "b11-avg", "templateType": "anything", "name": "a11"}, "lambda2": {"description": "", "group": "Ungrouped variables", "definition": "l2-avg", "templateType": "anything", "name": "lambda2"}, "b22": {"description": "", "group": "Ungrouped variables", "definition": "{k}*{a21}+{c1}", "templateType": "anything", "name": "b22"}, "lambda1": {"description": "", "group": "Ungrouped variables", "definition": "l1-avg", "templateType": "anything", "name": "lambda1"}, "c1": {"description": "", "group": "Ungrouped variables", "definition": "random(14..20#1)", "templateType": "randrange", "name": "c1"}, "a12": {"description": "", "group": "Ungrouped variables", "definition": "k*(b11-c1)", "templateType": "anything", "name": "a12"}, "l1": {"description": "", "group": "Ungrouped variables", "definition": "min({c1},{b11}+{b22}-{c1})", "templateType": "anything", "name": "l1"}, "b11": {"description": "", "group": "Ungrouped variables", "definition": "random(1..10#1)", "templateType": "randrange", "name": "b11"}, "l2": {"description": "", "group": "Ungrouped variables", "definition": "max({c1},{b11}+{b22}-{c1})", "templateType": "anything", "name": "l2"}, "a21": {"description": "", "group": "Ungrouped variables", "definition": "random(1..5#1)", "templateType": "randrange", "name": "a21"}}, "variable_groups": [], "metadata": {"description": "

This question concerns the evaluation of the eigenvalues and corresponding eigenvectors of a 2x2 matrix.

", "licence": "Creative Commons Attribution 4.0 International"}, "variablesTest": {"condition": "", "maxRuns": 100}, "name": "Timothy's copy of Eigenvalues and one eigenvector of a 2x2 matrix", "advice": "

The eigenvalues of a matrix are the values of \\(\\lambda\\) that satisfy the relation

\n

\\(|A-\\lambda I| = 0\\)

\n

\\(\\begin{vmatrix} \\var{a11}-\\lambda&\\var{a12}\\\\ \\var{a21}&\\var{a22}-\\lambda\\\\ \\end{vmatrix}=0\\)

\n

This gives:

\n

\\((\\var{a11}-\\lambda)*(\\var{a22}-\\lambda)-(\\var{a12})*(\\var{a21})=0\\)

\n

\\(\\lambda^2-\\simplify{{a11}+{a22}}\\lambda+\\simplify{{a11}*{a22}-{a21}*{a12}}=0\\)

\n

This can be solved using factorisation or by the quadratic formula to give:

\n

\\(\\lambda_1 =\\var{lambda1}\\) and \\(\\lambda_2 =\\var{lambda2}\\)

\n

An eigenvector \\(v=\\begin{pmatrix} x\\\\ y\\\\ \\end{pmatrix}\\) corresponding to an eigenvalue \\(\\lambda\\) must satisfy the relation:  \\((A-\\lambda I)v = 0\\)

\n

so for \\(\\lambda_1=\\var{lambda1}\\)  

\n

\\(\\begin{pmatrix} \\simplify{{a11}-{lambda1}}&\\var{a12}\\\\ \\var{a21}&\\simplify{{a22}-{lambda1}}\\\\ \\end{pmatrix}\\begin{pmatrix} x\\\\ \\var{a21}\\\\ \\end{pmatrix}=0\\)           

\n

thus

\n

\\(\\var{a21}x+\\simplify{{a22}-{lambda1}}*\\var{a21}=0\\)

\n

\\(\\Rightarrow ~ \\var{a21}x=-\\simplify{({a22}-{lambda1})*{a21}}\\)

\n

\\(\\Rightarrow ~ x=-\\simplify{({a22}-{lambda1})}\\)

\n

", "rulesets": {}, "parts": [{"variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "unitTests": [], "showCorrectAnswer": true, "variableReplacements": [], "marks": 0, "gaps": [{"strictPrecision": false, "precisionType": "dp", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacements": [], "maxValue": "lambda1", "notationStyles": ["plain", "en", "si-en"], "scripts": {}, "precision": 0, "precisionMessage": "You have not given your answer to the correct precision.", "type": "numberentry", "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "showPrecisionHint": false, "allowFractions": false, "unitTests": [], "minValue": "lambda1", "marks": 1, "mustBeReducedPC": 0, "correctAnswerFraction": false, "precisionPartialCredit": 0, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "mustBeReduced": false}, {"strictPrecision": false, "precisionType": "dp", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacements": [], "maxValue": "lambda2", "notationStyles": ["plain", "en", "si-en"], "scripts": {}, "precision": 0, "precisionMessage": "You have not given your answer to the correct precision.", "type": "numberentry", "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "showPrecisionHint": false, "allowFractions": false, "unitTests": [], "minValue": "lambda2", "marks": 1, "mustBeReducedPC": 0, "correctAnswerFraction": false, "precisionPartialCredit": 0, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "mustBeReduced": false}], "prompt": "

Calculate the eigenvalues of the matrix A

\n

\\(\\lambda_1\\) is the lesser of the two eigenvalues and \\(\\lambda_2\\) is the greater of the two eigenvalues;

\n

\\(\\lambda_1\\) = [[0]]

\n

\\(\\lambda_2\\) = [[1]]

", "sortAnswers": false, "scripts": {}, "type": "gapfill"}, {"variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "unitTests": [], "showCorrectAnswer": true, "variableReplacements": [], "marks": 0, "gaps": [{"strictPrecision": false, "precisionType": "dp", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacements": [], "maxValue": "{lambda1}-{a22}", "notationStyles": ["plain", "en", "si-en"], "scripts": {}, "precision": 0, "precisionMessage": "You have not given your answer to the correct precision.", "type": "numberentry", "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "showPrecisionHint": false, "allowFractions": false, "unitTests": [], "minValue": "{lambda1}-{a22}", "marks": 1, "mustBeReducedPC": 0, "correctAnswerFraction": false, "precisionPartialCredit": 0, "correctAnswerStyle": "plain", "showFeedbackIcon": true, "mustBeReduced": false}], "prompt": "

For the lesser eigenvalue \\(\\lambda_1\\) the corresponding eigenvector is \\(v_1=\\begin{pmatrix}x\\\\ \\var{a21}\\\\ \\end{pmatrix}\\)

\n

Enter the value for \\(x=\\) [[0]]

\n

", "sortAnswers": false, "scripts": {}, "type": "gapfill"}], "tags": [], "functions": {}, "type": "question", "contributors": [{"name": "Peter Johnston", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/771/"}, {"name": "Owen Jepps", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1195/"}, {"name": "Timothy Gould", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1466/"}]}]}], "contributors": [{"name": "Peter Johnston", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/771/"}, {"name": "Owen Jepps", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1195/"}, {"name": "Timothy Gould", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1466/"}]}