// Numbas version: finer_feedback_settings {"name": "Simon's copy of Constant deceleration", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"tags": [], "parts": [{"showFeedbackIcon": true, "showPrecisionHint": false, "variableReplacements": [], "strictPrecision": false, "variableReplacementStrategy": "originalfirst", "precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "precisionPartialCredit": 0, "correctAnswerStyle": "plain", "minValue": "(u^2+2*a*s)^(1/2)", "mustBeReducedPC": 0, "allowFractions": false, "scripts": {}, "extendBaseMarkingAlgorithm": true, "correctAnswerFraction": false, "customMarkingAlgorithm": "", "marks": 1, "notationStyles": ["plain", "en", "si-en"], "precision": "3", "showCorrectAnswer": true, "type": "numberentry", "prompt": "
Find the speed of the caravan in $\\mathrm{ms}^{-1}$ after it has travelled $\\var{s} \\, \\mathrm{m}$.
", "unitTests": [], "mustBeReduced": false, "maxValue": "(u^2+2*a*s)^(1/2)"}, {"showFeedbackIcon": true, "showPrecisionHint": false, "variableReplacements": [{"must_go_first": false, "part": "p0", "variable": "v"}], "strictPrecision": false, "variableReplacementStrategy": "originalfirst", "precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "precisionPartialCredit": 0, "correctAnswerStyle": "plain", "minValue": "(v-u)/a", "mustBeReducedPC": 0, "allowFractions": false, "scripts": {}, "extendBaseMarkingAlgorithm": true, "correctAnswerFraction": false, "customMarkingAlgorithm": "", "marks": 1, "notationStyles": ["plain", "en", "si-en"], "precision": "3", "showCorrectAnswer": true, "type": "numberentry", "prompt": "How many seconds does the caravan take to travel $\\var{s} \\, \\mathrm{m}$?
", "unitTests": [], "mustBeReduced": false, "maxValue": "(v-u)/a"}, {"showFeedbackIcon": true, "showPrecisionHint": false, "variableReplacements": [], "strictPrecision": false, "variableReplacementStrategy": "originalfirst", "precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "precisionPartialCredit": 0, "correctAnswerStyle": "plain", "minValue": "-(mass*a)", "mustBeReducedPC": 0, "allowFractions": false, "scripts": {}, "extendBaseMarkingAlgorithm": true, "correctAnswerFraction": false, "customMarkingAlgorithm": "", "marks": 1, "notationStyles": ["plain", "en", "si-en"], "precision": "3", "showCorrectAnswer": true, "type": "numberentry", "prompt": "Find the tension in Newtons in the rope which pulls the caravan.
", "unitTests": [], "mustBeReduced": false, "maxValue": "-(mass*a)"}, {"showFeedbackIcon": true, "showPrecisionHint": false, "variableReplacements": [], "strictPrecision": false, "variableReplacementStrategy": "originalfirst", "precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "precisionPartialCredit": 0, "correctAnswerStyle": "plain", "minValue": "-mass*a - resistance", "mustBeReducedPC": 0, "allowFractions": false, "scripts": {}, "extendBaseMarkingAlgorithm": true, "correctAnswerFraction": false, "customMarkingAlgorithm": "", "marks": 1, "notationStyles": ["plain", "en", "si-en"], "precision": "3", "showCorrectAnswer": true, "type": "numberentry", "prompt": "If the caravan does experience a resistance to motion of magnitude $\\var{resistance} \\, \\mathrm{N}$, what would the tension in the rope be, in Newtons?
", "unitTests": [], "mustBeReduced": false, "maxValue": "-mass*a - resistance"}], "variablesTest": {"maxRuns": 100, "condition": ""}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "A caravan pulled along by a car. Question uses SUVAT equations and $F=ma$.
"}, "name": "Simon's copy of Constant deceleration", "advice": "We are told that the caravan is decelerating at a rate of $a= \\var{a} \\ \\mathrm{ms^{-2}}$. We know $u=\\var{u}$ and $s=\\var{s}$ and we want $v$, therefore we can use the equation $v^2=u^2+2as$.
\n\\begin{align}
v^2 & = u^2 + 2as \\\\
& = \\var{u}^2 + \\left( 2 \\times \\var{a} \\times \\var{s} \\right) \\\\
& = \\var{u^2 + 2*a*s}
\\end{align}
Therefore $v = \\sqrt{\\var{u^2 + 2*a*s}} = \\var{v}$. So the speed is $\\var{v} \\ \\mathrm{ms^{-1}}$.
\nHaving worked out the speed $v$ of the caravan after it has travelled $\\var{s} \\, \\mathrm{m}$, we can use the formula $v = u + at$ to find the time taken.
\n\\begin{align}
v &= u + at \\\\
t &= \\frac{v-u}{a} \\\\
&= \\simplify[!basic]{({v}-{u})/{a}} \\\\
&= \\var{precround((v-u)/a,3)}
\\end{align}
The caravan takes $\\var{precround((v-u)/a,3)} \\, \\mathrm{s}$ to travel $\\var{s} \\, \\mathrm{m}$.
\nTo find the tension, $T$ in Newtons, we resolve in the direction of motion, where $a=\\var{a}$ and $T$ is acting in the opposite direction.
\n\\begin{align}
F & = ma \\\\
- T & = \\var{mass} \\times \\var{a} \\\\
T & = \\var{precround(mass*-a,3)}.
\\end{align}
The tension in the rope is $\\var{precround(mass*-a,3)} \\ \\mathrm{N}$.
\nIf the caravan experiences a resistance to motion of magnitude $\\var{resistance}N$ this resistance will act in the opposite direction to motion.
\n\\begin{align} F & = ma \\\\
- T - \\var{resistance} & = \\var{mass} \\times \\var{a}\\\\
T & = \\left(\\var{mass} \\times \\var{-a}\\right) - \\var{resistance} \\\\
& = \\var{precround(mass*-a - resistance,3)}. \\end{align}
The tension in the rope is $\\var{precround(mass*-a-resistance,3)} \\ \\mathrm{N}$.
", "preamble": {"css": "", "js": ""}, "statement": "A caravan of mass $\\var{mass} \\ \\mathrm{kg}$ is pulled on a rope by a car along a straight horizontal road. It decelerates at a constant rate of $\\var{-a} \\ \\mathrm{ms^{-2}}$ from an initial speed of $\\var{u} \\ \\mathrm{ms^{-1}}$. There is no resistance to motion.
\nGive your answers to each of the following questions to 3 decimal places.
", "extensions": [], "ungrouped_variables": ["mass", "a", "u", "s", "v", "resistance"], "variables": {"mass": {"group": "Ungrouped variables", "templateType": "randrange", "name": "mass", "definition": "random(50..400#1)", "description": ""}, "v": {"group": "Ungrouped variables", "templateType": "anything", "name": "v", "definition": "precround((u^2+2*a*s)^(1/2),3)", "description": "3dp
"}, "a": {"group": "Ungrouped variables", "templateType": "randrange", "name": "a", "definition": "random(-5..-0.5#0.25)", "description": "negative because deceleration
"}, "u": {"group": "Ungrouped variables", "templateType": "randrange", "name": "u", "definition": "random(25..30#0.5)", "description": "initial speed
"}, "s": {"group": "Ungrouped variables", "templateType": "randrange", "name": "s", "definition": "random(10..30#1)", "description": ""}, "resistance": {"group": "Ungrouped variables", "templateType": "randrange", "name": "resistance", "definition": "random(10..30#1)", "description": ""}}, "functions": {}, "variable_groups": [], "rulesets": {}, "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}