// Numbas version: finer_feedback_settings {"name": "Simon's copy of Connected particles 2", "extensions": [], "custom_part_types": [], "resources": [["question-resources/pulley1.png", "/srv/numbas/media/question-resources/pulley1.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "

We can draw a diagram to show all the forces acting on each mass and the pulley, and the acceleration. Here, the mass of particle $A$ is $m_1 \\mathrm{kg} = \\var{A} \\mathrm{kg}$ and the mass of particle $m_2 \\mathrm{kg} = \\var{B} \\mathrm{kg}$. As particle $B$ is heavier the acceleration will act in the direction shown. The tension in the string is $T \\mathrm{N}$ and the force exerted on the string by the pulley is $F \\mathrm{N}$.

\n

\n

a) We can not treat the whole system as a particle because the particles are moving in different directions. Therefore to find the acceleration we need to resolve for each mass separately.

\n

For $A$ we have equation (1):  \\begin{align} T - m_1g & = m_1 a, \\\\
                                                                    T - \\var{A}g & = \\var{A}a. \\end{align}

\n

For $B$ we have equation (2): \\begin{align} m_2g - T & = m_2a, \\\\
                                                                   \\var{B}g - T & = \\var{B}a. \\end{align}

\n

In both (1) and (2) we have resolved in the direction of acceleration.

\n

We can solve these two equations simultaneously. For example, by adding (1) and (2) we get

\n

\\begin{align} T - \\var{A}g + \\var{B}g - T & = (\\var{A} + \\var{B}) a, \\\\
                          (\\var{B} - \\var{A})g & = (\\var{A} + \\var{B}) a, \\\\ 
                               a & = \\frac{\\var{A} + \\var{B}}{(\\var{B} - \\var{A})g}, \\\\
                                   & = \\var{precround((B*g-A*g)/(A+B),3)} \\mathrm{ms^{-2}}. \\end{align}

\n

The acceleration of each mass is $\\var{precround((B*g-A*g)/(A+B),3)} \\mathrm{ms^{-2}}$.

\n

b) To find the tension in the string we can use our answer to part a) in either equation (1) or (2).

\n

From equation (1) we have

\n

\\begin{align} T - \\var{A}g & = \\var{A}a, \\\\
                      T & = \\var{A} \\times (g + a), \\\\
                         & = \\var{A} \\times (9.8 + \\var{ac}), \\\\
                                       & = \\var{precround(A*(9.8+ac),3)} \\mathrm{N}. \\end{align}

\n

The tension in the string is $\\var{T}\\mathrm{N}$.

\n

c) The force exerted on the pulley by the string is $2T \\mathrm{N} = \\var{precround(2*T,3)} \\mathrm{N}$.

", "functions": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["A", "B", "g", "ac", "T"], "statement": "

Suppose that there are two particles $A$ and $B$, of masses $\\var{A} \\mathrm{kg}$ and $\\var{B} \\mathrm{kg}$ respectively. They are attached to a light inextensible string which passes over a small, smooth, fixed pulley. The masses hang with the string taut. 

\n

In the following answer to 3d.p. and take the acceleration due to gravity as $g = 9.8 \\mathrm{ms^{-2}}$.

", "variables": {"T": {"description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "T", "definition": "precround(A*g+A*ac,3)"}, "A": {"description": "

mass of particle A

", "templateType": "randrange", "group": "Ungrouped variables", "name": "A", "definition": "random(0.05..1#0.025)"}, "g": {"description": "

acceleration due to gravity

", "templateType": "anything", "group": "Ungrouped variables", "name": "g", "definition": "9.8"}, "B": {"description": "

mass of particle B

", "templateType": "randrange", "group": "Ungrouped variables", "name": "B", "definition": "random(1.05..2#0.05)"}, "ac": {"description": "

acceleration

", "templateType": "anything", "group": "Ungrouped variables", "name": "ac", "definition": "precround((B*g - A*g)/(A+B),3)"}}, "extensions": [], "metadata": {"description": "

Connected particle involving a pulley system - can not treat whole system as a whole due to different directions.

", "licence": "Creative Commons Attribution 4.0 International"}, "preamble": {"css": "", "js": ""}, "parts": [{"type": "numberentry", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 1, "notationStyles": ["plain", "en", "si-en"], "maxValue": "(B*g - A*g)/(A+B)", "correctAnswerFraction": false, "showPrecisionHint": false, "minValue": "(B*g - A*g)/(A+B)", "precisionType": "dp", "prompt": "

Suppose that the system is released from rest. Find, in $\\mathrm{ms^{-2}}$, the acceleration of each mass.

", "precisionMessage": "You have not given your answer to the correct precision.", "precision": "3", "scripts": {}, "strictPrecision": false, "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "unitTests": [], "allowFractions": false, "mustBeReducedPC": 0, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "precisionPartialCredit": 0, "customMarkingAlgorithm": ""}, {"type": "numberentry", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 1, "notationStyles": ["plain", "en", "si-en"], "maxValue": "A*g+A*ac", "correctAnswerFraction": false, "showPrecisionHint": false, "minValue": "A*g+A*ac", "precisionType": "dp", "prompt": "

Using your 3d.p. answer to part a) find the tension in Newtons ($\\mathrm{N}$) in the string.

", "precisionMessage": "You have not given your answer to the correct precision.", "precision": "3", "scripts": {}, "strictPrecision": false, "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "unitTests": [], "allowFractions": false, "mustBeReducedPC": 0, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "precisionPartialCredit": 0, "customMarkingAlgorithm": ""}, {"type": "numberentry", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 1, "notationStyles": ["plain", "en", "si-en"], "maxValue": "2*T+0.001", "correctAnswerFraction": false, "showPrecisionHint": false, "minValue": "2*T-0.001", "precisionType": "dp", "prompt": "

Find the force in Newtons ($\\mathrm{N}$) exerted on the pulley by the string.

", "precisionMessage": "You have not given your answer to the correct precision.", "precision": "3", "scripts": {}, "strictPrecision": false, "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "unitTests": [], "allowFractions": false, "mustBeReducedPC": 0, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "precisionPartialCredit": 0, "customMarkingAlgorithm": ""}], "variable_groups": [], "tags": [], "name": "Simon's copy of Connected particles 2", "rulesets": {}, "type": "question", "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}