// Numbas version: finer_feedback_settings {"name": "Simon's copy of Connected particles 1", "extensions": [], "custom_part_types": [], "resources": [["question-resources/Connected_particles.png", "/srv/numbas/media/question-resources/Connected_particles.png"], ["question-resources/Connected_particles2.png", "/srv/numbas/media/question-resources/Connected_particles2.png"], ["question-resources/Connected_particles3.png", "/srv/numbas/media/question-resources/Connected_particles3.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Two masses in a box which is attached to a string. Finding acceleration by modelling the two masses as the whole system. Find forces exerted by the two masses.

"}, "variablesTest": {"condition": "a>0", "maxRuns": 100}, "statement": "

Suppose that there is a light box attached to a vertical light inextensible string. The box holds two masses $A$ and $B$ as shown in the diagram below, where $A$ rests upon $B$.

\n

\n

Suppose that the mass of $A$ is $m_1 = \\var{massa} \\, \\mathrm{kg}$ and the mass of $B$ is $m_2 = \\var{massb} \\, \\mathrm{kg}$. The acceleration due to gravity is $g=9.8 \\, \\mathrm{ms^{-2}}$.

\n

Give your answers to the following questions to 3 decimal places.

", "extensions": [], "preamble": {"css": "", "js": ""}, "parts": [{"notationStyles": ["plain", "en", "si-en"], "precisionMessage": "You have not given your answer to the correct precision.", "showCorrectAnswer": true, "strictPrecision": false, "precisionType": "dp", "showPrecisionHint": false, "mustBeReducedPC": 0, "showFeedbackIcon": true, "allowFractions": false, "type": "numberentry", "correctAnswerStyle": "plain", "scripts": {}, "correctAnswerFraction": false, "mustBeReduced": false, "variableReplacements": [], "precision": "3", "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "marks": 1, "maxValue": "(T-massa*g-massb*g)/mass", "unitTests": [], "prompt": "

Suppose that the tension in the string is $\\var{T} \\, \\mathrm{N}$ and that the box is raised vertically, using the string. With what acceleration, in $\\mathrm{ms^{-2}}$, is the box raised?

", "customMarkingAlgorithm": "", "minValue": "(T-massa*g-massb*g)/mass", "precisionPartialCredit": 0}, {"notationStyles": ["plain", "en", "si-en"], "precisionMessage": "You have not given your answer to the correct precision.", "showCorrectAnswer": true, "strictPrecision": false, "precisionType": "dp", "showPrecisionHint": false, "mustBeReducedPC": 0, "showFeedbackIcon": true, "allowFractions": false, "type": "numberentry", "correctAnswerStyle": "plain", "scripts": {}, "correctAnswerFraction": false, "mustBeReduced": false, "variableReplacements": [], "precision": "3", "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "marks": 1, "maxValue": "massa*g+a*massa", "unitTests": [], "prompt": "

Using the acceleration in $\\mathrm{ms^{-2}}$ found in part a), find the force in Newtons ($\\mathrm{N}$) exerted on mass $B$ by mass $A$.

", "customMarkingAlgorithm": "", "minValue": "massa*g+a*massa", "precisionPartialCredit": 0}, {"notationStyles": ["plain", "en", "si-en"], "precisionMessage": "You have not given your answer to the correct precision.", "showCorrectAnswer": true, "strictPrecision": false, "precisionType": "dp", "showPrecisionHint": false, "mustBeReducedPC": 0, "showFeedbackIcon": true, "allowFractions": false, "type": "numberentry", "correctAnswerStyle": "plain", "scripts": {}, "correctAnswerFraction": false, "mustBeReduced": false, "variableReplacements": [], "precision": "3", "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "marks": 1, "maxValue": "T+0.001", "unitTests": [], "prompt": "

Find the force in Newtons ($\\mathrm{N}$) exerted on mass $B$ by the box.

", "customMarkingAlgorithm": "", "minValue": "T-0.001", "precisionPartialCredit": 0}], "tags": [], "variables": {"a": {"templateType": "anything", "description": "

acceleration 3d.p.

", "definition": "precround((T-massa*g-massb*g)/mass,3)", "group": "Ungrouped variables", "name": "a"}, "mass": {"templateType": "anything", "description": "", "definition": "massa+massb", "group": "Ungrouped variables", "name": "mass"}, "massb": {"templateType": "randrange", "description": "", "definition": "random(1.6..3#0.1)", "group": "Ungrouped variables", "name": "massb"}, "g": {"templateType": "anything", "description": "", "definition": "9.8", "group": "Ungrouped variables", "name": "g"}, "aexact": {"templateType": "anything", "description": "", "definition": "(T-massa*g-massb*g)/mass", "group": "Ungrouped variables", "name": "aexact"}, "massa": {"templateType": "randrange", "description": "", "definition": "random(0.25..1.5#0.25)", "group": "Ungrouped variables", "name": "massa"}, "T": {"templateType": "randrange", "description": "

tension in string

", "definition": "random(45..80#0.05)", "group": "Ungrouped variables", "name": "T"}}, "advice": "

a) We can draw a diagram to show the forces acting on the system. As all parts are moving in the same straight line (vertically) we can resolve for the whole system.

\n

\n

We have that 

\n

\\begin{align} T - m_1g - m_2g & = (m_1 + m_2)a, \\\\
                           \\var{T} - \\var{massa}g - \\var{massb}g & = \\var{mass}a, \\\\
                                a & =\\frac{\\var{T} - \\var{massa}g - \\var{massb}g}{\\var{mass}}, \\\\
                                   & = \\var{a}\\mathrm{ms^{-2}}.\\end{align}

\n

The acceleration of the system is $\\var{a}\\mathrm{ms^{-2}}$.

\n

b) To find the force exerted on mass $B$ by mass $A$ we can find the force exerted on $A$ by $B$ (the normal reaction, $R$) and use Newton's 3rd Law to say that the force exerted on $B$ by $A$ will have the same magnitude.

\n

\n

We resolve the forces to find $R$, using the 3d.p. value for $a$ from part a).

\n

\\begin{align} R - m_1g & = m_1a, \\\\
                                    R & = m_1g + m_1a, \\\\
                                       & = \\var{massa} \\left(9.8 + \\var{precround(aexact,4)}\\right), \\\\
                                        & = \\var{precround(massa*(9.8+aexact),3)} \\mathrm{N}.\\end{align}

\n

So the force exerted on $B$ by $A$ is $\\var{precround(massa*(9.8+aexact),3)} \\mathrm{N}$.

\n

c) Let X be the force exerted on mass $B$ by the box. 

\n

Resolving forces acting on mass $B$, with upwards being the positive direction, and using our answer from (b), we obtain:

\n

\\begin{align} X - \\var{precround(massa*(9.8+aexact),4)} - m_2g & = m_2a, \\\\
                       X & = \\var{precround(massa*(9.8+aexact),4)}+\\var{massb}g+\\var{massb}\\times \\var{precround(aexact,4)}, \\\\
                         X & = \\var{precround(massa*(9.8+aexact)+massb*g+massb*aexact,3)} \\mathrm{N} \\end{align}

\n

", "rulesets": {}, "variable_groups": [], "name": "Simon's copy of Connected particles 1", "ungrouped_variables": ["massa", "massb", "T", "g", "mass", "a", "aexact"], "type": "question", "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}