// Numbas version: finer_feedback_settings {"name": "sean's copy of Simon's copy of Solve simultaneous equations by finding inverse matrix,", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"gaps": [{"showFeedbackIcon": true, "numRows": "2", "correctAnswerFractions": false, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "correctAnswer": "ma", "variableReplacements": [], "tolerance": 0, "extendBaseMarkingAlgorithm": true, "scripts": {}, "type": "matrix", "allowFractions": true, "allowResize": false, "markPerCell": false, "showCorrectAnswer": true, "numColumns": "2", "marks": 1, "unitTests": []}, {"extendBaseMarkingAlgorithm": true, "failureRate": 1, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "checkingAccuracy": 0.001, "marks": "0.25", "variableReplacements": [], "checkVariableNames": false, "showFeedbackIcon": true, "scripts": {}, "expectedVariableNames": [], "type": "jme", "checkingType": "absdiff", "showCorrectAnswer": true, "showPreview": false, "answer": "x", "unitTests": [], "vsetRangePoints": 5, "vsetRange": [0, 1]}, {"extendBaseMarkingAlgorithm": true, "failureRate": 1, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "checkingAccuracy": 0.001, "marks": "0.25", "variableReplacements": [], "checkVariableNames": false, "showFeedbackIcon": true, "scripts": {}, "expectedVariableNames": [], "type": "jme", "checkingType": "absdiff", "showCorrectAnswer": true, "showPreview": false, "answer": "y", "unitTests": [], "vsetRangePoints": 5, "vsetRange": [0, 1]}, {"showFeedbackIcon": true, "numRows": "2", "correctAnswerFractions": false, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "correctAnswer": "mb", "variableReplacements": [], "tolerance": 0, "extendBaseMarkingAlgorithm": true, "scripts": {}, "type": "matrix", "allowFractions": true, "allowResize": false, "markPerCell": false, "showCorrectAnswer": true, "numColumns": 1, "marks": "0.5", "unitTests": []}], "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "marks": 0, "variableReplacements": [], "prompt": "
$\\mathbf{A} = $ [[0]]
\n[[1]] | \n
[[2]] | \n
$\\mathbf{b} = $ [[3]]
Find the inverse of $\\mathbf{A}$.
\n$\\mathbf{A}^{-1} = $ [[0]]
", "showFeedbackIcon": true, "scripts": {}, "type": "gapfill", "showCorrectAnswer": true, "sortAnswers": false, "unitTests": []}, {"gaps": [{"showFeedbackIcon": true, "numRows": "2", "correctAnswerFractions": true, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "correctAnswer": "ma_inverse*mb", "variableReplacements": [], "tolerance": 0, "extendBaseMarkingAlgorithm": true, "scripts": {}, "type": "matrix", "allowFractions": true, "allowResize": false, "markPerCell": false, "showCorrectAnswer": true, "numColumns": 1, "marks": 1, "unitTests": []}], "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "marks": 0, "variableReplacements": [], "prompt": "Now find $\\mathbf{A}^{-1}\\mathbf{b}$.
\n$\\mathbf{A}^{-1}\\mathbf{b} = $ [[0]]
", "showFeedbackIcon": true, "scripts": {}, "type": "gapfill", "showCorrectAnswer": true, "sortAnswers": false, "unitTests": []}, {"gaps": [{"mustBeReducedPC": 0, "minValue": "x", "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "correctAnswerFraction": true, "marks": "0.5", "variableReplacements": [], "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "scripts": {}, "maxValue": "x", "type": "numberentry", "allowFractions": true, "showFeedbackIcon": true, "showCorrectAnswer": true, "unitTests": [], "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"mustBeReducedPC": 0, "minValue": "y", "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "correctAnswerFraction": true, "marks": "0.5", "variableReplacements": [], "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "scripts": {}, "maxValue": "y", "type": "numberentry", "allowFractions": true, "showFeedbackIcon": true, "showCorrectAnswer": true, "unitTests": [], "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "marks": 0, "variableReplacements": [], "prompt": "Finally, solve the equations.
\n$x = $ [[0]]
\n$y = $ [[1]]
", "showFeedbackIcon": true, "scripts": {}, "type": "gapfill", "showCorrectAnswer": true, "sortAnswers": false, "unitTests": []}], "variablesTest": {"condition": "", "maxRuns": 100}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Putting a pair of linear equations into matrix notation and then solving by finding the inverse of the coefficient matrix.
"}, "ungrouped_variables": ["ma", "a00", "a01", "a10", "a11", "mb", "ma_inverse", "x", "y"], "advice": "The equations can be written in the matrix form
\n\\[ \\var{ma}\\begin{pmatrix} x \\\\ y \\end{pmatrix} = \\var{mb} \\]
\n$\\mathrm{det}(\\mathbf{A}) = \\simplify[]{ {ma[0][0]}*{ma[1][1]} - {ma[0][1]}*{ma[1][0]}} = \\var{det(ma)} \\neq 0$, so $\\mathbf{A}$ is invertible.
\n\\[ \\mathbf{A}^{-1} = \\frac{1}{\\var{det(ma)}} \\begin{pmatrix} \\var{ma[1][1]}&\\var{-ma[0][1]} \\\\ \\var{-ma[1][0]}&\\var{ma[0][0]} \\end{pmatrix} = \\simplify[fractionnumbers]{{ma_inverse}} \\]
\nWe have
\n\\begin{align}
\\mathbf{A}^{-1}\\mathbf{b} &= \\simplify[fractionnumbers]{{ma_inverse}*{mb}} \\\\
&= \\simplify[fractionnumbers]{{ma_inverse*mb}}
\\end{align}
Given the equation $\\mathbf{Av}=\\mathbf{b}$ we can make $\\mathbf{v}$ the subject by pre-multiplying each side by $\\mathbf{A}^{-1}$:
\n\\begin{align}
\\mathbf{A}^{-1}\\mathbf{A}\\mathbf{v} &= \\mathbf{A}^{-1}\\mathbf{b} \\\\
\\mathbf{v} &= \\mathbf{A}^{-1}\\mathbf{b} \\\\ \\\\
\\end{align}
Hence,
\n\\[ \\begin{pmatrix} x \\\\ y \\end{pmatrix} = \\simplify[fractionnumbers]{{ma_inverse*mb}} \\]
\nThat is,
\n\\begin{align}
x &= \\simplify[fractionnumbers]{{x}}, \\\\ \\\\
y &= \\simplify[fractionnumbers]{{y}}
\\end{align}
Matrix A. a10 is picked so it's non-singular, and a11 is never $\\pm a01$.
\nNo entry is 0.
", "name": "ma"}}, "tags": [], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "statement": "Rewrite the following system of equations as a matrix equation
\n\\[ \\mathbf{Av} = \\mathbf{b} \\]
\nfor a matrix $\\mathbf{A}$ and column vectors $\\mathbf{v}$ and $\\mathbf{b}$.
\n\\begin{align}
\\simplify[std]{ {ma[0][0]}x + {ma[0][1]}y} &= \\var{mb[0][0]} \\\\
\\simplify[std]{ {ma[1][0]}x + {ma[1][1]}y} &= \\var{mb[1][0]}
\\end{align}
Input all numbers as fractions or integers and not as decimals.
", "functions": {}, "name": "sean's copy of Simon's copy of Solve simultaneous equations by finding inverse matrix,", "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}, {"name": "sean hunte", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3167/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}, {"name": "sean hunte", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3167/"}]}