// Numbas version: finer_feedback_settings {"name": "Mark equations", "extensions": ["eukleides", "random_person", "quantities"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Mark equations", "tags": [], "metadata": {"description": "
All the answers in this question are equations. In order to mark each\n equation, Numbas needs to pick some values that satisfy the equation \nand some that don't, and check that the student's answer agrees with the\n expected answer.
Any equation with the same solution set as the expected answer will be marked correct.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "All the answers in this question are equations. In order to mark each equation, Numbas needs to pick some values that satisfy the equation and some that don't, and check that the student's answer agrees with the expected answer.
\nAny equation with the same solution set as the expected answer will be marked correct.
", "advice": "", "rulesets": {}, "extensions": ["eukleides", "quantities", "random_person"], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"factor": {"name": "factor", "group": "Ungrouped variables", "definition": "random(2 .. 8#1)", "description": "", "templateType": "randrange", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "1", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "factor"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$s = \\simplify[]{{factor}p}$
\nAlso try $s-\\var{factor}p=0$ and $p=s/\\var{factor}$.
", "answer": "s={factor}p", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": "10", "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "p", "value": ""}, {"name": "s", "value": "random(random(vRange),factor*p)"}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$s = \\simplify[]{{factor}p}$
\nBut this time there's a pattern-match restriction that your answer must be of the form $s = \\ldots$.
", "answer": "s={factor}p", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": "10", "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "s=?", "partialCredit": 0, "message": "Your answer must be in the form $s = f(p)$.", "nameToCompare": ""}, "valuegenerators": [{"name": "p", "value": ""}, {"name": "s", "value": "random(random(vRange),factor*p)"}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$x^2+y^2=1$
\nAlso try $1-x^2-y^2=0$ and $y=\\sqrt{1-x^2}$.
", "answer": "x^2+y^2=1", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": "10", "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": "random(random(vRange),sqrt(1-x^2))"}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$x^2 + y^2 + z^2=1$
", "answer": "x^2+y^2+z^2=1", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": "10", "vsetRange": [0, "0.5"], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": ""}, {"name": "z", "value": "random(random(vRange),sqrt(1-x^2-y^2))"}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$x^2+y^2>1$
\nBecause this is an inequality, we need to randomly pick values either side of the critical curve, and some exactly on it.
", "answer": "x^2+y^2>1", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": "10", "vsetRange": ["-1", 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": "sqrt(1-x^2)+random(0,random(-0.001..0.001#0))"}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}]}