// Numbas version: exam_results_page_options {"name": "Mark equations", "extensions": ["eukleides", "quantities", "random_person"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"tags": [], "statement": "

All the answers in this question are equations. In order to mark each equation, Numbas needs to pick some values that satisfy the equation and some that don't, and check that the student's answer agrees with the expected answer.

\n

Any equation with the same solution set as the expected answer will be marked correct.

", "variables": {"factor": {"name": "factor", "group": "Ungrouped variables", "description": "", "definition": "random(2 .. 8#1)", "templateType": "randrange"}, "a": {"name": "a", "group": "Ungrouped variables", "description": "", "definition": "1", "templateType": "anything"}}, "extensions": ["eukleides", "quantities", "random_person"], "ungrouped_variables": ["a", "factor"], "variable_groups": [], "parts": [{"customName": "", "scripts": {}, "type": "jme", "checkingType": "absdiff", "valuegenerators": [{"name": "p", "value": ""}, {"name": "s", "value": "random(random(vRange),factor*p)"}], "marks": 1, "checkVariableNames": false, "vsetRangePoints": "10", "unitTests": [], "checkingAccuracy": 0.001, "variableReplacements": [], "showFeedbackIcon": true, "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "failureRate": 1, "showCorrectAnswer": true, "prompt": "

$s = \\simplify[]{{factor}p}$

\n

Also try $s-\\var{factor}p=0$ and $p=s/\\var{factor}$.

", "customMarkingAlgorithm": "", "answer": "s={factor}p", "showPreview": true, "useCustomName": false}, {"mustmatchpattern": {"message": "Your answer must be in the form $s = f(p)$.", "nameToCompare": "", "pattern": "s=?", "partialCredit": 0}, "customName": "", "scripts": {}, "type": "jme", "checkingType": "absdiff", "valuegenerators": [{"name": "p", "value": ""}, {"name": "s", "value": "random(random(vRange),factor*p)"}], "marks": 1, "checkVariableNames": false, "vsetRangePoints": "10", "unitTests": [], "checkingAccuracy": 0.001, "variableReplacements": [], "showFeedbackIcon": true, "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "failureRate": 1, "showCorrectAnswer": true, "prompt": "

$s = \\simplify[]{{factor}p}$

\n

But this time there's a pattern-match restriction that your answer must be of the form $s = \\ldots$.

", "customMarkingAlgorithm": "", "answer": "s={factor}p", "showPreview": true, "useCustomName": false}, {"customName": "", "scripts": {}, "type": "jme", "checkingType": "absdiff", "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": "random(random(vRange),sqrt(1-x^2))"}], "marks": 1, "checkVariableNames": false, "vsetRangePoints": "10", "unitTests": [], "checkingAccuracy": 0.001, "variableReplacements": [], "showFeedbackIcon": true, "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "failureRate": 1, "showCorrectAnswer": true, "prompt": "

$x^2+y^2=1$

\n

Also try $1-x^2-y^2=0$ and $y=\\sqrt{1-x^2}$.

", "customMarkingAlgorithm": "", "answer": "x^2+y^2=1", "showPreview": true, "useCustomName": false}, {"customName": "", "scripts": {}, "type": "jme", "checkingType": "absdiff", "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": ""}, {"name": "z", "value": "random(random(vRange),sqrt(1-x^2-y^2))"}], "marks": 1, "checkVariableNames": false, "vsetRangePoints": "10", "unitTests": [], "checkingAccuracy": 0.001, "variableReplacements": [], "showFeedbackIcon": true, "vsetRange": [0, "0.5"], "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "failureRate": 1, "showCorrectAnswer": true, "prompt": "

$x^2 + y^2 + z^2=1$

", "customMarkingAlgorithm": "", "answer": "x^2+y^2+z^2=1", "showPreview": true, "useCustomName": false}, {"customName": "", "scripts": {}, "type": "jme", "checkingType": "absdiff", "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": "sqrt(1-x^2)+random(0,random(-0.001..0.001#0))"}], "marks": 1, "checkVariableNames": false, "vsetRangePoints": "10", "unitTests": [], "checkingAccuracy": 0.001, "variableReplacements": [], "showFeedbackIcon": true, "vsetRange": ["-1", 1], "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "failureRate": 1, "showCorrectAnswer": true, "prompt": "

$x^2+y^2>1$

\n

Because this is an inequality, we need to randomly pick values either side of the critical curve, and some exactly on it.

", "customMarkingAlgorithm": "", "answer": "x^2+y^2>1", "showPreview": true, "useCustomName": false}], "rulesets": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "advice": "", "name": "Mark equations", "preamble": {"js": "", "css": ""}, "functions": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

All the answers in this question are equations. In order to mark each\n equation, Numbas needs to pick some values that satisfy the equation \nand some that don't, and check that the student's answer agrees with the\n expected answer.

Any equation with the same solution set as the expected answer will be marked correct.

"}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}]}