// Numbas version: finer_feedback_settings
{"name": "Dividing equilateral triangles equally", "extensions": ["eukleides", "random_person", "quantities"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {}, "name": "Dividing equilateral triangles equally", "statement": "", "parts": [{"type": "numberentry", "variableReplacements": [], "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "correctAnswerFraction": false, "allowFractions": false, "scripts": {}, "showCorrectAnswer": true, "useCustomName": false, "showFeedbackIcon": true, "unitTests": [], "customMarkingAlgorithm": "", "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "customName": "", "mustBeReducedPC": 0, "showFractionHint": true, "correctAnswerStyle": "plain", "prompt": "
Each of the equilateral triangles has been split into triangles of equal area.
\n{max_width(40,shearer_diagram)}
\nWhat is the missing length?
", "maxValue": "len_shearer", "marks": 1, "minValue": "len_shearer"}], "tags": [], "navigation": {"allowregen": true, "preventleave": false, "showfrontpage": false, "showresultspage": "never"}, "resources": [], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}], "functions": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Three equilateral triangles are divided equally into 3, 4 and 5 parts respectively. Calculate the distance between two marked points.
Based on a puzzle by Catriona Shearer, shared on Twitter.
"}, "variable_groups": [], "preamble": {"css": "", "js": ""}, "variables": {"q": {"name": "q", "group": "Ungrouped variables", "definition": "x(equilateral(30)[1])", "description": "", "templateType": "anything"}, "base": {"name": "base", "group": "Ungrouped variables", "definition": "random(1..7)*30", "description": "", "templateType": "anything"}, "len_shearer": {"name": "len_shearer", "group": "Ungrouped variables", "definition": "base*(1/2+2/3*4/5)", "description": "", "templateType": "anything"}, "shearer_diagram": {"name": "shearer_diagram", "group": "Ungrouped variables", "definition": "// Based on https://twitter.com/Cshearer41/status/1115917680027021312\neukleides(\"Catriona Shearer puzzle\",[\nlet(\n [a,b,c],equilateral(30)\n, [c,b,d],equilateral(c,b)\n, [d,b,f],equilateral(d,b)\n, a1, b+2/3*(c-b)\n, a2, a+1/2*(b-a)\n, b1, b+3/4*(d-b)\n, b2, b+2/3*(c-b)\n, b3, b+1/2*(b1-b)\n, c1, b+4/5*(f-b)\n, c2, b+3/4*(d-b)\n, c3, b+2/3*(c1-b)\n, c4, b+1/2*(c2-b)\n, [\n a..b..c\n , b..c..d\n , d..b..f\n , (a..a1..a2) color1 open\n , (c..b1..b2..b3) color2 open\n , (d..c1..c2..c3..c4) color3 open\n , ((c..d)+vector(0,2)) arrows size(10) label(base)\n , ((c3..a2)+vector(0,-2)) arrows size(10) label(\"?\")\n ] * size(20) font(\"sans\")\n)\n],[\"base\":base])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "custom_part_types": [], "advice": "", "ungrouped_variables": ["base", "shearer_diagram", "len_shearer", "q"], "extensions": ["eukleides", "random_person"], "type": "exam"}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "http://localhost:8000/accounts/profile/1/"}, {"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}]}