// Numbas version: finer_feedback_settings {"name": "John's copy of Row reducing a matrix and finding its rank and nullity-MA2223", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"condition": "deter<>0\nand\nmax(map(testing(record[0][x]),x,0..length(record[0])-1))=0", "maxRuns": "200"}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "notes": "

Rank can be 2,3 or 4

", "description": "

Reduce a 5x6 matrix to row reduced form and using this find rank and nullity.

"}, "advice": "

a) The following shows how $A$ is reduced to row-echelon form.

\n

\n

{solution(record_ops_matrix,record_ops_message)}

\n

b) 

\n

The rank of A is the number of columns of R with pivots, i.e. $\\var{rank}$.

\n

The nullity of A is the number of columns of R without pivots, i.e. $5-\\var{rank}=\\var{5-rank}$.

\n

Remember that the Rank-Nullity Theorem says that the number of columns of A equals the rank of A plus the nullity of A, i.e. $5=\\var{rank}+\\var{nullity}$.

\n

Also the dimensions of the row space and the column space are both equal to the rank.

\n

Finally, the dimension of the null space is the nullity.

\n

", "ungrouped_variables": ["echelonform", "ech", "echform", "testmatrix", "record", "rref1", "record_ops_matrix", "record_ops_message", "rank", "maxint", "steps", "rdmat", "deter", "nullity", "echmatrix", "trtestmatrix", "rows", "columns", "column_basis", "sum", "null_basis", "ec", "chosen", "student_cols_matrix", "not_chosen_col"], "parts": [{"variableReplacements": [], "prompt": "

\n

$R= $[[0]]

\n

All entries in the matrix must be input as fractions or integers and not as decimals.

\n

\n

", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "scripts": {}, "marks": 0, "gaps": [{"variableReplacements": [], "allowFractions": true, "showCorrectAnswer": true, "numRows": "6", "allowResize": true, "marks": "4", "type": "matrix", "numColumns": "5", "variableReplacementStrategy": "originalfirst", "markPerCell": false, "correctAnswerFractions": true, "scripts": {}, "tolerance": 0, "correctAnswer": "{echmatrix}"}]}, {"variableReplacements": [], "prompt": "

\n

$\\operatorname{Rank}(A)=$[[0]]

\n

$\\operatorname{Nullity}(A)=$[[1]]

\n

$\\operatorname{dim}(\\operatorname{col}(A))=$[[2]]

\n

$\\operatorname{dim}(\\operatorname{row}(A))=$[[3]]

\n

$\\operatorname{dim}(\\operatorname{null}(A))=$[[4]]

\n

", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "scripts": {}, "marks": 0, "gaps": [{"variableReplacements": [], "allowFractions": false, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "minValue": "rank", "scripts": {}, "type": "numberentry", "maxValue": "rank", "correctAnswerFraction": false, "marks": "0.2", "showPrecisionHint": false}, {"variableReplacements": [], "allowFractions": false, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "minValue": "nullity", "scripts": {}, "type": "numberentry", "maxValue": "nullity", "correctAnswerFraction": false, "marks": "0.2", "showPrecisionHint": false}, {"variableReplacements": [], "allowFractions": false, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "minValue": "rank", "scripts": {}, "type": "numberentry", "maxValue": "rank", "correctAnswerFraction": false, "marks": "0.2", "showPrecisionHint": false}, {"variableReplacements": [], "allowFractions": false, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "minValue": "rank", "scripts": {}, "type": "numberentry", "maxValue": "rank", "correctAnswerFraction": false, "marks": "0.2", "showPrecisionHint": false}, {"variableReplacements": [], "allowFractions": false, "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "minValue": "nullity", "scripts": {}, "type": "numberentry", "maxValue": "nullity", "correctAnswerFraction": false, "marks": "0.2", "showPrecisionHint": false}]}], "preamble": {"js": "question.functions={};\nquestion.functions.ref=function(m){\n \n m = util.copyarray(m,true);\n \n function finish() {\n\n return rank;\n }\n\n\n\n var lead = 0;\n var rank = 0;\n var echelon=[];\n var rows = m.length;\n for(var i=0;i');\nvar n=matrix_list.length;\nvar m='';\nvar mess='';\nfor(var i=0;i'+mess+'');\ntable.append('');\ntable.append(''+m+''); \n}\nreturn table;\n", "language": "javascript", "parameters": [["matrix_list", "list"], ["message_list", "list"]], "type": "html"}, "echelon_form_matrix": {"definition": "\nfunction getRandomInt(min, max) {\n return Math.floor(Math.random() * (max - min + 1)) + min;\n};\n//generate a random echelon form\nfunction random_echelon_form(columns,rank){\nvar l=[];\nvar ech_form=[], ech_form1=[],b=[];\nfor(var i=1;i=ind?temp.push(getRandomInt(1,max)):temp.push(0);\n }\n for(var k=0;kFind the row-reduced echelon form $R$ of the following matrix $A$.

\n

$A=\\var{testmatrix}$

\n

\n

", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "John Steele", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2218/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "John Steele", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2218/"}]}