// Numbas version: exam_results_page_options {"name": "Justin's copy of Find and use the formula for a geometric sequence", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"preventleave": false, "showfrontpage": false, "allowregen": true}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"metadata": {"description": "

Find the common ratio of a given geometric sequence, write down the formula for the nth term and use it to calculate a given term in the sequence.

", "licence": "Creative Commons Attribution 4.0 International"}, "variable_groups": [], "extensions": [], "rulesets": {}, "name": "Justin's copy of Find and use the formula for a geometric sequence", "variables": {"a": {"name": "a", "templateType": "anything", "definition": "random(3..10 except r)", "group": "Ungrouped variables", "description": "

The first term

"}, "n": {"name": "n", "templateType": "anything", "definition": "random(ceil(log(1000,r)-log(a,r))..floor(log(1000000,r)-log(a,r)))", "group": "Ungrouped variables", "description": "

The index of a term to calculate.

\n

The range is picked so that the number is between 1,000 and 1,000,000.

"}, "r": {"name": "r", "templateType": "anything", "definition": "random(3..8)", "group": "Ungrouped variables", "description": "

The common ratio

"}, "nth_term": {"name": "nth_term", "templateType": "anything", "definition": "a*r^n", "group": "Ungrouped variables", "description": ""}}, "advice": "

The terms in a geometric sequence are found by repeatedly multiplying the last term by a constant, called the common ratio.

\n

#### a)

\n

To find the common ratio, pick a term of the sequence and divide it by the previous term.

\n

We can calculate the common ratio using a table:

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $n$ $1$ $2$ $3$ $4$ $a_n$ $\\var{a}$ $\\var{a*r}$ $\\var{a*r^2}$ $\\var{a*r^3}$ $a_n \\div a_{n-1}$ $\\var{r}$ $\\var{r}$ $\\var{r}$
\n

The common ratio is $\\var{r}$.

\n

#### b)

\n

The general formula for the $n^\\text{th}$ term of a geometric sequence is

\n

\$\\displaystyle {a_n=ar^{(n-1)}\\text{,}}\$

\n

where $a$ is the first term, and $r$ is the common ratio.

\n

So the formula for this sequence is

\n

\$a_n = \\simplify[]{ {a}*{r}^n } \\text{.} \$

\n

#### c)

\n

We know from part b) that the formula for the $n^\\text{th}$ term is $a_n = \\simplify[]{ {a}*{r}^n}$.

\n

Therefore the $\\var{n}^\\text{th}$ term in the sequence is

\n

\\begin{align}
a_\\var{n} &= \\var{a} \\times \\var{r}^{\\var{b}} \\\\
&= \\var{a*r^n}
\\end{align}

", "tags": [], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Justin McGuinness", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3360/"}], "ungrouped_variables": ["a", "r", "n", "nth_term"], "variablesTest": {"maxRuns": 100, "condition": ""}, "type": "question", "preamble": {"css": "", "js": ""}, "statement": "", "functions": {}, "parts": [{"customMarkingAlgorithm": "", "sortAnswers": false, "prompt": "

Find the common ratio for the following geometric series.

\n

$\\var{a}, \\var{a*r}, \\var{a*r^2}, \\var{a*r^3}, \\ldots$

\n

Common ratio: [[0]]

", "customName": "", "extendBaseMarkingAlgorithm": true, "type": "gapfill", "scripts": {}, "unitTests": [], "showCorrectAnswer": true, "marks": 0, "variableReplacements": [], "gaps": [{"maxValue": "r", "customMarkingAlgorithm": "", "mustBeReducedPC": 0, "customName": "", "type": "numberentry", "extendBaseMarkingAlgorithm": true, "minValue": "r", "scripts": {}, "notationStyles": ["plain", "en", "si-en"], "unitTests": [], "showCorrectAnswer": true, "variableReplacements": [], "marks": 1, "correctAnswerStyle": "plain", "allowFractions": false, "mustBeReduced": false, "useCustomName": false, "correctAnswerFraction": false, "showFractionHint": true, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}], "useCustomName": false, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}, {"customMarkingAlgorithm": "", "steps": [{"customMarkingAlgorithm": "", "prompt": "

The formula for the $n^\\text{th}$ term of a geometric sequence is

\n

\$a_n = ar^{(n-1)} \$

\n

where $a$ is the first term in the sequence and $r$ is the common ratio.

", "customName": "", "extendBaseMarkingAlgorithm": true, "type": "information", "scripts": {}, "unitTests": [], "showCorrectAnswer": true, "marks": 0, "variableReplacements": [], "useCustomName": false, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}], "sortAnswers": false, "prompt": "

Write down the formula for the  $n^\\text{th}$ term in the sequence

\n

$a_n =$ [[0]]

", "type": "gapfill", "extendBaseMarkingAlgorithm": true, "customName": "", "stepsPenalty": 0, "scripts": {}, "unitTests": [], "showCorrectAnswer": true, "marks": 0, "variableReplacements": [], "gaps": [{"customMarkingAlgorithm": "", "checkingType": "absdiff", "checkVariableNames": false, "valuegenerators": [{"name": "n", "value": ""}], "customName": "", "failureRate": 1, "type": "jme", "checkingAccuracy": 0.001, "answer": "{a}*{r}^(n-1)", "vsetRangePoints": 5, "scripts": {}, "unitTests": [], "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "marks": 1, "variableReplacements": [], "vsetRange": [0, 1], "showPreview": true, "useCustomName": false, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}], "useCustomName": false, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}, {"customMarkingAlgorithm": "", "sortAnswers": false, "prompt": "

What is the $\\var{n}^\\text{th}$ term in this sequence?

\n

$a_\\var{n} =$ [[0]]

", "customName": "", "extendBaseMarkingAlgorithm": true, "type": "gapfill", "scripts": {}, "unitTests": [], "showCorrectAnswer": true, "marks": 0, "variableReplacements": [], "gaps": [{"maxValue": "a*r^(n-1)", "customMarkingAlgorithm": "", "mustBeReducedPC": 0, "customName": "", "type": "numberentry", "extendBaseMarkingAlgorithm": true, "minValue": "a*r^(n-1)", "scripts": {}, "notationStyles": ["plain", "en", "si-en"], "unitTests": [], "showCorrectAnswer": true, "variableReplacements": [], "marks": 1, "correctAnswerStyle": "plain", "allowFractions": false, "mustBeReduced": false, "useCustomName": false, "correctAnswerFraction": false, "showFractionHint": true, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}], "useCustomName": false, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Justin McGuinness", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3360/"}]}