// Numbas version: finer_feedback_settings {"name": "Frame: A-Frame with load", "extensions": ["geogebra", "weh", "quantities"], "custom_part_types": [{"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "

A value with units marked right if within an adjustable % error of the correct value.  Marked close if within a wider margin of error.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "

Modify the unit portion of the student's answer by

\n

1. replacing \"ohms\" with \"ohm\"  case insensitive

\n

2. replacing '-' with ' ' 

\n

3. replacing '°' with ' deg' 

\n

to allow answers like 10 ft-lb and 30°

", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "

This fixes the student answer for two common errors.  

\n

If student_units are wrong  - replace with correct units

\n

If student_scalar has the wrong sign - replace with right sign

\n

If student makes both errors, only one gets fixed.

", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "

Only marked close if the student actually has the right sign.

", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units.  if correct answer is 100 N and close is ±1%,
99  N is accepted.", "input_type": "percent", "default_value": "75"}, {"name": "C2", "label": "No units or wrong sign", "help_url": "", "hint": "Partial credit for forgetting units or using wrong sign.
If the correct answer is 100 N, both 100 and -100 N are accepted.", "input_type": "percent", "default_value": "50"}, {"name": "C3", "label": "Close, no units.", "help_url": "", "hint": "Partial Credit for close value but forgotten units.
This value would be close if the expected units were provided.  If the correct answer is 100 N, and close is ±1%,
99 is accepted.", "input_type": "percent", "default_value": "25"}], "public_availability": "always", "published": true, "extensions": ["quantities"]}], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Frame: A-Frame with load", "tags": ["Equilibrium", "equilibrium", "frame", "Frame", "Mechanics", "mechanics", "Statics", "statics"], "metadata": {"description": "Solve for the internal forces at on a multipart frame.", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

{geogebra_applet('wrp4gmsn',var_1)}

\n

The frame shown supports a {F} load at point $F$.  Determine the $x$- and $y$- components of the forces acting on member $ADC$ at pins $A$, $D$ and $C$.

\n

", "advice": "

\n

$L = \\var{L}$ $b = \\var{b}$ $h =\\var{h}$  $d=\\var{d}$

\n

$DE = \\var{DE}$

\n

$EF = \\var{EF}$

\n

Start by drawing neat, labeled, consistent free body diagrams of the whole frame and each of its parts.  Exposed internal forces must occur in equal and opposite pairs.  In the diagram below, the external forces are drawn in red.

\n

{geogebra_applet('x3npnvsb',var_2)}

\n

Count the unknowns on each diagram.  If any diagram has three unknowns, consider starting there.  In this case FBD I has three unknowns ($A_x, A_y$, and $B$).

\n

FBD I

\n

 \\[\\begin{align} \\text{I: }\\Sigma M_A &= 0\\\\  B ( \\simplify[]{{AD}+{DE} + {AD} })  &= F( \\simplify[!collectNumbers]{{AD}+{DE} + {EF} })\\\\B&=\\var{F} \\left( \\dfrac{\\var{AD+qty(L,unit_d)}}{\\var{qty(b,unit_d)}}\\right) \\\\ &= \\var{b_y}\\uparrow \\\\\\\\\\text{I: }\\Sigma F_y &=0\\\\A_y+B &= F\\\\A_y &= \\var{F} - \\var{b_y}\\\\&=\\var{(a_y)}\\uparrow\\\\\\\\\\text{I: }\\Sigma F_x &= 0\\\\A_x&=0\\end{align}\\]

\n

FBD II

\n

With $A_x, A_y$, and $B$ known, the remaining free body diagrams all have four unknowns but, luckily in this problem, the lines of action of forces $E_x, E_y$, and $D_x$ all intersect at point $E$ on FBD II.  By taking moments there, we can find $D_y$.  If this was not the case, you would need to select two free body diagrams and take moments appropriately to yield two equations with two unknowns which can be solved simultaneously.  

\n

\\[\\begin{align} \\text{II: }\\Sigma M_E &=0\\\\ D_y(\\var{DE}) &= F(\\var{EF})\\\\D_y &= \\var{F}\\left(\\dfrac{\\var{EF}}{\\var{DE}}\\right)\\\\ &=\\var{d(D_y)}\\downarrow\\end{align}\\]

\n

FBD III

\n

With $A_x, A_y$ and $D_y$ found, only three unknowns remain on FBD III, so it can be solved to satisfy the problem statement.  Remember that negative results indicate that the force acts in the direction opposite to the one assumed on the free body diagram.

\n

\\[\\begin{align} \\text{III: }\\Sigma M_C &= 0\\\\ - A_y ( \\var{b/2}) - D_x(\\var{h-d}) - D_y(\\var{scalar(DE/2)})  &= 0 \\\\D_x &=\\dfrac{-\\var{b/2} A_y - \\var{scalar(DE/2)}D_y}{\\var{h-d}} \\\\ &=-\\dfrac{\\var{b/2} (\\var{d(A_y)}) +\\var{scalar(DE/2)}(\\var{d(D_y)})}{\\var{h-d}} \\\\&= \\var{d(d_x)} \\leftarrow\\\\\\\\\\text{III: }\\Sigma F_y &=0\\\\A_y+D_y - C_y &= 0\\\\C_y &= \\var{d(A_y)} +\\var{d(D_y)}\\\\&=\\var{d(C_y) }\\downarrow\\\\\\\\\\text{III: }\\Sigma F_x &= 0\\\\D_x-C_x&=0\\\\C_x &= \\var{d(C_x)} \\rightarrow \\end{align}\\]

\n

FBD II

\n

With $D_x$ determined, the remainin unknown on FBD II can be found.

\n

\\[\\begin{align} \\text{II: }\\Sigma F_x &= 0\\\\D_x-E_x&=0\\\\E_x &= \\var{d(E_x)} \\leftarrow \\end{align}\\]

\n

FBD IV

\n

All the unknown reactions are now known.  You can check your work by verifying that these force put member $CEB$ in equilibrium.  If they don't, you have made an error.

\n

\\[\\begin{align} \\text{IV: }\\Sigma M_c &\\stackrel{?}{=} 0\\\\ 0&\\stackrel{?}{=}  B_y (\\var{qty(b/2,unit_d)}) - E_y (\\var{DE/2}) + E_x (\\var{qty(h-d,unit_d)})\\\\0&\\stackrel{?}{=}   (\\var{d(B_y)})(\\var{qty(b/2,unit_d)}) -  (\\var{d(E_y)})(\\var{DE/2})  + (\\var{d(E_x)}) (\\var{qty(h-d,unit_d)})\\\\0&\\stackrel{?}{=}   (\\var{d(B_y qty(b/2,unit_d))}) -  (\\var{d(E_y DE/2)})  + (\\var{d(E_x qty(h-d,unit_d))})\\\\0&= \\var{check} \\, \\checkmark\\end{align}\\]

\n

\n

", "rulesets": {}, "extensions": ["geogebra", "quantities", "weh"], "variables": {"c_y": {"name": "c_y", "group": "solution", "definition": "A_y + D_y", "description": "

member ADC sigma fy

", "templateType": "anything"}, "d_y": {"name": "d_y", "group": "solution", "definition": "f EF/DE", "description": "

member DEF sum of moment about E

", "templateType": "anything"}, "e_y": {"name": "e_y", "group": "solution", "definition": "d_y + f", "description": "

member DEF sum forces in y

", "templateType": "anything"}, "debug": {"name": "debug", "group": "Ungrouped variables", "definition": "false", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(1..3) h/4", "description": "

height of arm

", "templateType": "anything"}, "check": {"name": "check", "group": "solution", "definition": "scalar(b_y qty(b/2,unit_d) - e_y DE/2 + e_x qty(h-d,unit_d))", "description": "

member CEB sigma Mc 

", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(h/2..h#2)", "description": "

width between supports

", "templateType": "anything"}, "var_1": {"name": "var_1", "group": "Ungrouped variables", "definition": "[['b',b],['h',h],['L',L],\n['d',d],['unit','\"'+unit_d+'\"']]", "description": "

list passed to geogebra applet

", "templateType": "anything"}, "EF": {"name": "EF", "group": "solution", "definition": "qty(l,unit_d)-DE", "description": "", "templateType": "anything"}, "unit_F": {"name": "unit_F", "group": "Ungrouped variables", "definition": "if(unit_d='m','N','lb')", "description": "", "templateType": "anything"}, "F": {"name": "F", "group": "Ungrouped variables", "definition": "qty(random(10..500#50),unit_f)", "description": "", "templateType": "anything"}, "a_x": {"name": "a_x", "group": "solution", "definition": "qty(0,unit_f)", "description": "", "templateType": "anything"}, "DE": {"name": "DE", "group": "solution", "definition": "qty((h-d)/h b,unit_d)", "description": "", "templateType": "anything"}, "L": {"name": "L", "group": "Ungrouped variables", "definition": "random(scalar(DE)..b#0.5)", "description": "

length of horizontal arm

", "templateType": "anything"}, "d_x": {"name": "d_x", "group": "solution", "definition": "-(qty(b/2,unit_d) A_y + DE/2 D_y)/qty(h-d,unit_d)", "description": "

-\\dfrac{\\var{b/2} (\\var{A_y}) + \\var{scalar(DE/2)}(\\var{D_y})}{\\var{h-d}} 

\n

\n

 ex (b_y qty(b/2,unit_d) + e_y DE/2)/qty(h-d,unit_d)

\n

-(qty(b/2,unit_d) A_y + DE/2 D_y)/qty(h-d,unit_d)

", "templateType": "anything"}, "var_2": {"name": "var_2", "group": "Ungrouped variables", "definition": "[['b',b 6/h],['h',6],['L',L 6/h],\n['d',d 6/h],['unit','\"'+unit_d+'\"']]", "description": "

diagram scaled proportional to h =6

", "templateType": "anything"}, "unit_d": {"name": "unit_d", "group": "Ungrouped variables", "definition": "random('m','ft')", "description": "", "templateType": "anything"}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(4..10#2)", "description": "

height of structure

", "templateType": "anything"}, "c_x": {"name": "c_x", "group": "solution", "definition": "d_x", "description": "", "templateType": "anything"}, "AD": {"name": "AD", "group": "solution", "definition": "qty(b/2 d/h,unit_d)", "description": "

sum of moment about A for entire frame

", "templateType": "anything"}, "e_x": {"name": "e_x", "group": "solution", "definition": "d_x", "description": "

fbd DEF sigma fx

", "templateType": "anything"}, "a_y": {"name": "a_y", "group": "solution", "definition": "f - b_y", "description": "

sum f_y for whole thing

", "templateType": "anything"}, "b_y": {"name": "b_y", "group": "solution", "definition": "f * (scalar(AD)+L)/b", "description": "

distance from a to force

", "templateType": "anything"}}, "variablesTest": {"condition": "scalar(AD)+L <> b and scalar(DE) <> L // prevent force over roller or pin E", "maxRuns": 100}, "ungrouped_variables": ["b", "h", "L", "d", "unit_d", "var_1", "F", "unit_F", "var_2", "debug"], "variable_groups": [{"name": "solution", "variables": ["AD", "DE", "EF", "b_y", "a_y", "d_y", "d_x", "e_y", "e_x", "c_y", "c_x", "check", "a_x"]}], "functions": {"d": {"parameters": [["q", "quantity"]], "type": "string", "language": "jme", "definition": "siground(q,4)"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Pin A", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$A_x =$ [[0]] [[1]]  {a_x} $A_y =$ [[2]] [[3]]  {d(a_y)}

", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "Ax", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(0,unit_f)", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "1_n_2", "useCustomName": true, "customName": "L-R", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["←", "→", "Neither"], "matrix": [0, 0, "1"], "distractors": ["", "", ""]}, {"type": "engineering-answer", "useCustomName": true, "customName": "Ay", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "abs(A_y)", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "1_n_2", "useCustomName": true, "customName": "U-D", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["↑", "↓", "Neither"], "matrix": ["if(scalar(A_y)>0,1,0)", "if(scalar(A_y)<0,1,0)", "if(scalar(A_y)=0,1,0)"], "distractors": ["", "", ""]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Pin D", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$D_x =$ [[0]] [[1]]  {d(d_x)}$D_y =$ [[2]] [[3]]  {d(d_y)}

", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "Dx", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "abs(D_x)", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "1_n_2", "useCustomName": true, "customName": "L-R", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["←", "→", "Neither"], "matrix": ["if(scalar(D_x)>0,1,0)", "if(scalar(D_x)<0,1,0)", "if(scalar(D_x)=0,1,0)"], "distractors": ["", "", ""]}, {"type": "engineering-answer", "useCustomName": true, "customName": "Dy", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "abs(D_y)", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "1_n_2", "useCustomName": true, "customName": "U-D", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["↑", "↓", "Neither"], "matrix": ["if(scalar(D_y)>0,1,0)", "if(scalar(D_y)<0,1,0)", "if(scalar(D_y)=0,1,0)"], "distractors": ["", "", ""]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Pin C", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$C_x =$ [[0]] [[1]]  {d(C_x)}$C_y =$ [[2]] [[3]]  {d(c_y)}

", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "Cx", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "abs(C_x)", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "1_n_2", "useCustomName": true, "customName": "L-R", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["←", "→", "Neither"], "matrix": ["if(scalar(C_x)<0,1,0)", "if(scalar(C_x)>0,1,0)", "if(scalar(C_x)=0,1,0)"], "distractors": ["", "", ""]}, {"type": "engineering-answer", "useCustomName": true, "customName": "Cy", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "abs(C_y)", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "1_n_2", "useCustomName": true, "customName": "U-D", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["↑", "↓", "Neither"], "matrix": ["if(scalar(C_y)<0,1,0)", "if(scalar(C_y)>0,1,0)", "if(scalar(C_y)=0,1,0)"], "distractors": ["", "", ""]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}]}]}], "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}]}