// Numbas version: finer_feedback_settings {"name": "JD's copy of Polynomial Graph 2", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "JD's copy of Polynomial Graph 2", "variables": {"defs": {"templateType": "anything", "description": "", "definition": "[\n ['b',b],\n ['c',c],\n ['n',n]\n]", "group": "Ungrouped variables", "name": "defs"}, "b": {"templateType": "anything", "description": "", "definition": "random(-3..3#0.5)", "group": "Ungrouped variables", "name": "b"}, "n": {"templateType": "anything", "description": "", "definition": "random(-1,1)", "group": "Ungrouped variables", "name": "n"}, "D": {"templateType": "anything", "description": "", "definition": "b^2 - 4*c*n", "group": "Ungrouped variables", "name": "D"}, "c": {"templateType": "anything", "description": "", "definition": "random(-3..3#0.5)", "group": "Ungrouped variables", "name": "c"}}, "statement": "
Select the true statements about the following graph.
\n{geogebra_applet('https://ggbm.at/ECnvrES2', defs, [])}
", "functions": {"graph": {"parameters": [], "definition": "geogebra_applet('https://ggbm.at/aXxv2ECN', defs, [])", "type": "html", "language": "jme"}}, "tags": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "This uses an embedded Geogebra graph of a cubic polynomial with random coefficients set by NUMBAS. Student has to decide what kind of map it represents and whether an inverse function exists.
"}, "extensions": ["geogebra"], "variablesTest": {"condition": "D<0", "maxRuns": "200"}, "preamble": {"css": "", "js": ""}, "parts": [{"minMarks": 0, "distractors": ["", "", "", "", "", "", ""], "type": "m_n_2", "scripts": {}, "minAnswers": "2", "marks": 0, "shuffleChoices": true, "variableReplacements": [], "prompt": "One-to-one map
", "Many-to-one map
", "One-to-many map
", "This graph is a function.
", "This graph is not a function.
", "Inverse function exists.
", "Inverse function does not exist.
"], "showCorrectAnswer": true, "maxAnswers": 0, "displayType": "checkbox", "maxMarks": 0, "warningType": "none", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "displayColumns": 0, "matrix": ["1", "-1", "-1", "1", "-1", "1", "-1"]}], "variable_groups": [], "rulesets": {}, "ungrouped_variables": ["b", "c", "defs", "D", "n"], "advice": "This is a function. The graph passes the vertical line test, because a vertical line would touch only one point on the curve. That means each input ($x$-axis, domain) goes to one output ($y$-axis, range).
\nThis is a one-to-one map. Each value in the range (the $y$-axis) is associated with only one value in the domain.
\nThis function has an inverse function. The graph passes the horizontal line test, because a horizontal line would make contact with only one point on the curve.
", "type": "question", "contributors": [{"name": "Adrian Jannetta", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/164/"}, {"name": "JD Ichwan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3389/"}]}]}], "contributors": [{"name": "Adrian Jannetta", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/164/"}, {"name": "JD Ichwan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3389/"}]}