// Numbas version: finer_feedback_settings {"name": "JD's copy of Polynomial Graph 1", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {"graph": {"language": "jme", "definition": "geogebra_applet('https://ggbm.at/aXxv2ECN', defs, [])", "type": "html", "parameters": []}}, "metadata": {"description": "

This uses an embedded Geogebra graph of a cubic polynomial with random coefficients set by NUMBAS.  Student has to decide what kind of map it represents and whether an inverse function exists.

", "licence": "Creative Commons Attribution 4.0 International"}, "preamble": {"css": "", "js": ""}, "variables": {"a": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(-3..3#0.5)", "name": "a", "description": ""}, "y2": {"group": "Ungrouped variables", "templateType": "anything", "definition": "n*((-b)^3)/3 + 0.5*(a+b)*(-b)^2+(a*b)*(-b)+c", "name": "y2", "description": "

y2

"}, "b": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(-3..3#0.5)", "name": "b", "description": ""}, "n": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(-1,1)", "name": "n", "description": ""}, "D": {"group": "Ungrouped variables", "templateType": "anything", "definition": "(a+b)^2 - 4*a*b*n", "name": "D", "description": ""}, "c": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(-3..3#0.5)", "name": "c", "description": ""}, "y1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "n*((-a)^3)/3 + 0.5*(a+b)*(-a)^2+(a*b)*(-a)+c", "name": "y1", "description": ""}, "defs": {"group": "Ungrouped variables", "templateType": "anything", "definition": "[\n ['a',a],\n ['b',b],\n ['c',c],\n ['n',n]\n]", "name": "defs", "description": ""}}, "variable_groups": [], "statement": "

Select the true statements about the following graph.

\n

{geogebra_applet('https://ggbm.at/aXxv2ECN', defs, [])}

", "advice": "

This is a function.  The graph passes the vertical line test, because a vertical line would touch only one point on the curve.  That means each input ($x$-axis, domain) goes to one output ($y$-axis, range).

\n

This is a many-to-one map.  Some of the range values can be obtained from different domain values.

\n

This function does not have an inverse function.  The graph fails the horizontal line test, because a horizontal line would make contact with more than one point on the curve.

", "tags": [], "rulesets": {}, "name": "JD's copy of Polynomial Graph 1", "ungrouped_variables": ["a", "b", "c", "defs", "D", "n", "y1", "y2"], "variablesTest": {"condition": "a<>b and abs(b-a)>1 and abs(y1)<10 and abs(y2)<10 and D>0", "maxRuns": "200"}, "parts": [{"matrix": ["-1", "1", "-1", "1", "-1", "-1", "1"], "scripts": {}, "marks": 0, "distractors": ["", "", "", "", "", "", ""], "maxAnswers": 0, "warningType": "none", "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "maxMarks": 0, "minMarks": 0, "minAnswers": "2", "choices": ["

One-to-one map

", "

Many-to-one map

", "

One-to-many map

", "

This graph is a function.

", "

This graph is not  a function.

", "

Inverse function exists.

", "

Inverse function does not exist.

"], "variableReplacements": [], "shuffleChoices": true, "prompt": "", "showFeedbackIcon": true, "displayType": "checkbox", "type": "m_n_2", "displayColumns": 0}], "extensions": ["geogebra"], "type": "question", "contributors": [{"name": "Adrian Jannetta", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/164/"}, {"name": "JD Ichwan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3389/"}]}]}], "contributors": [{"name": "Adrian Jannetta", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/164/"}, {"name": "JD Ichwan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3389/"}]}