// Numbas version: finer_feedback_settings {"name": "Maria's copy of Introduction to Matrices", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": [], "tags": [], "metadata": {"description": "

aij  notation and definition of the order of a matrix.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "extensions": [], "statement": "

Matrices are rectangular arrays of numbers arranged in rows and columns.  For example

\n

$\\begin{pmatrix} 1&2\\\\ 4&5\\\\ \\end{pmatrix} ,                                      \\begin{pmatrix} 0&-1\\ &3\\\\2&4&-2 \\end{pmatrix}$

\n

The rows run across the matrices while the columns run down the matrices.  Thus in the first matrix above the numbers $\\begin{pmatrix}1&2\\end{pmatrix}$ are in the first row while the numbers $\\begin{pmatrix}4&5\\end{pmatrix}$ are in the second row and similarly the numbers $\\begin{pmatrix} 1\\\\ 4\\\\ \\end{pmatrix}$ are in the first column while the numbers $\\begin{pmatrix} 2\\\\ 5\\\\ \\end{pmatrix}$ are in the second column.

\n

A matrix with $\\bf m$ rows and $\\bf n$ columns is called a matrix of order $\\bf m\\times n$ or dimension $\\bf m\\times n$ (or an $\\bf m\\times n$ matrix for brevity).

\n

When working with matrices the positions of the numbers in the arrays are as important as the actual values of the numbers.  Given a matrix called  $A$ the number in row $i$ and column $j$ is usually denoted $a_{ij}$ it is also sometimes called the $ij^{th}$ element of the matrix $A$.

", "advice": "

a)      Remember that the dimensions are $\\rm \\color{red}{rows} \\times \\color{blue}{columns}$, so you need to count the number or rwos and columns in the matrix and wrtite them in that order.

\n

b)      Remember that the elements are in the form $A_{\\rm \\color{red}{ rows},\\color{blue}{columns}}$ where $A$ is the matrix.

\n

For example if we are looking for $a_{12}$ we look at the matrix $A= \\begin{pmatrix} \\var{a11} &\\bf( \\underline{\\var{a12}}) \\\\ \\var{a21} & \\var{a22}\\end{pmatrix}$ we want the the element on $\\rm \\color{red}{row ~ 1}$ and $\\rm \\color{blue}{column ~ 2}$ which in this case is $\\bf \\underline{\\var{a12}}$

\n

", "parts": [{"prompt": "

Example 1 -- Give the dimensions of the following matrices:

\n

$A=\\var{A}$ has dimensions [[0]]$ \\times $[[1]]

\n

$B=\\var{B}$ is a [[2]]$ \\times$[[3]] matrix

\n

$C=\\var{C}$ is of dimension [[4]]$ \\times$[[5]]

", "variableReplacementStrategy": "originalfirst", "marks": 0, "showCorrectAnswer": true, "type": "gapfill", "scripts": {}, "variableReplacements": [], "gaps": [{"allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "marks": 1, "showCorrectAnswer": true, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{n1}", "scripts": {}, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "maxValue": "{n1}", "variableReplacements": []}, {"allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "marks": 1, "showCorrectAnswer": true, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{m1}", "scripts": {}, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "maxValue": "{m1}", "variableReplacements": []}, {"allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "marks": 1, "showCorrectAnswer": true, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{n2}", "scripts": {}, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "maxValue": "{n2}", "variableReplacements": []}, {"allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "marks": 1, "showCorrectAnswer": true, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{m2}", "scripts": {}, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "maxValue": "{m2}", "variableReplacements": []}, {"allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "marks": 1, "showCorrectAnswer": true, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{n3}", "scripts": {}, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "maxValue": "{n3}", "variableReplacements": []}, {"allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "marks": 1, "showCorrectAnswer": true, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{m3}", "scripts": {}, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "maxValue": "{m3}", "variableReplacements": []}]}, {"prompt": "

Example 2 -- Give the values of the following elements of the matrices from example 1 above:

\n

$a_{\\var{n1}\\var{m1}}=$[[0]]

\n

$b_{\\var{n2}\\var{m2}}=$[[1]]

\n

$c_{\\var{n3}\\var{m3}}=$[[2]]

\n

$c_{\\var{n4}\\var{m4}}=$[[3]]

", "variableReplacementStrategy": "originalfirst", "marks": 0, "showCorrectAnswer": true, "type": "gapfill", "scripts": {}, "variableReplacements": [], "gaps": [{"allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "marks": 1, "showCorrectAnswer": true, "type": "numberentry", "correctAnswerFraction": false, "minValue": "A[n1-1][m1-1]", "scripts": {}, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "maxValue": "A[n1-1][m1-1]", "variableReplacements": []}, {"allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "marks": 1, "showCorrectAnswer": true, "type": "numberentry", "correctAnswerFraction": false, "minValue": "b[n2-1][m2-1]", "scripts": {}, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "maxValue": "b[n2-1][m2-1]", "variableReplacements": []}, {"allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "marks": 1, "showCorrectAnswer": true, "type": "numberentry", "correctAnswerFraction": false, "minValue": "c[n3-1][m3-1]", "scripts": {}, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "maxValue": "c[n3-1][m3-1]", "variableReplacements": []}, {"allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "marks": 1, "showCorrectAnswer": true, "type": "numberentry", "correctAnswerFraction": false, "minValue": "c[n4-1][m4-1]", "scripts": {}, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "maxValue": "c[n4-1][m4-1]", "variableReplacements": []}]}, {"minMarks": 0, "maxMarks": 0, "marks": 0, "showCorrectAnswer": true, "displayColumns": "1", "type": "1_n_2", "prompt": "

If a matrix is described as being $p \\times q$ then the order is

", "shuffleChoices": false, "choices": ["

$\\mathrm{rows} \\times \\mathrm{columns}$

", "

$\\mathrm{columns} \\times \\mathrm{rows}$

", "

Neither of the above.

"], "scripts": {}, "variableReplacementStrategy": "originalfirst", "matrix": ["1", 0, 0], "displayType": "radiogroup", "distractors": ["", "", ""], "variableReplacements": []}, {"minMarks": 0, "maxMarks": 0, "layout": {"type": "all", "expression": ""}, "showCorrectAnswer": true, "warningType": "none", "answers": ["Columns", "Rows", "Rows or columns interchangeably"], "prompt": "

If a matrix $A$ is described as having elements $a_{ij}$ then the variables on the left can be described as follows:

", "shuffleAnswers": false, "minAnswers": 0, "shuffleChoices": false, "choices": ["$i$", "$j$"], "scripts": {}, "maxAnswers": 0, "variableReplacementStrategy": "originalfirst", "matrix": [[0, "0.5", 0], ["0.5", 0, 0]], "displayType": "radiogroup", "type": "m_n_x", "variableReplacements": [], "marks": 0}], "preamble": {"js": "", "css": ""}, "rulesets": {}, "variables": {"n1": {"name": "n1", "description": "", "templateType": "anything", "definition": "random(1..2)", "group": "A"}, "n2": {"name": "n2", "description": "", "templateType": "anything", "definition": "random(2..4)", "group": "B"}, "n3": {"name": "n3", "description": "", "templateType": "anything", "definition": "random(2..4)", "group": "C"}, "m1": {"name": "m1", "description": "", "templateType": "anything", "definition": "random(1..2)", "group": "A"}, "m3": {"name": "m3", "description": "", "templateType": "anything", "definition": "random(2..4)", "group": "C"}, "m2": {"name": "m2", "description": "", "templateType": "anything", "definition": "random(2..4)", "group": "B"}, "m4": {"name": "m4", "description": "", "templateType": "anything", "definition": "random(1..(m3-1) except m3)", "group": "C2"}, "A": {"name": "A", "description": "", "templateType": "anything", "definition": "transpose(matrix(repeat(repeat(random(-9..9),n1),m1)))", "group": "A"}, "C": {"name": "C", "description": "", "templateType": "anything", "definition": "transpose(matrix(repeat(repeat(random(-9..9),n3),m3)))", "group": "C"}, "B": {"name": "B", "description": "", "templateType": "anything", "definition": "transpose(matrix(repeat(repeat(random(-9..9),n2),m2)))", "group": "B"}, "n4": {"name": "n4", "description": "", "templateType": "anything", "definition": "random(1..(n3-1) except n3)", "group": "C2"}}, "name": "Maria's copy of Introduction to Matrices", "functions": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "variable_groups": [{"name": "A", "variables": ["n1", "m1", "A"]}, {"name": "B", "variables": ["n2", "m2", "B"]}, {"name": "C", "variables": ["n3", "m3", "C"]}, {"name": "C2", "variables": ["n4", "m4"]}], "type": "question", "contributors": [{"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}]}]}], "contributors": [{"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}]}