// Numbas version: finer_feedback_settings {"name": "Maria's copy of Eigenvalues and one eigenvector of a 2x2 matrix", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "
The eigenvalues of a matrix are the values of \\(\\lambda\\) that satisfy the relation
\n\\(|A-\\lambda I| = 0\\)
\n\\(\\begin{vmatrix} \\var{a11}-\\lambda&\\var{a12}\\\\ \\var{a21}&\\var{a22}-\\lambda\\\\ \\end{vmatrix}=0\\)
\nThis gives:
\n\\((\\var{a11}-\\lambda)*(\\var{a22}-\\lambda)-(\\var{a12})*(\\var{a21})=0\\)
\n\\(\\lambda^2-\\simplify{{a11}+{a22}}\\lambda+\\simplify{{a11}*{a22}-{a21}*{a12}}=0\\)
\nThis can be solved using factorisation or by the quadratic formula to give:
\n\\(\\lambda_1 =\\var{lambda1}\\) and \\(\\lambda_2 =\\var{lambda2}\\)
\nAn eigenvector \\(v=\\begin{pmatrix} x\\\\ y\\\\ \\end{pmatrix}\\) corresponding to an eigenvalue \\(\\lambda\\) must satisfy the relation: \\((A-\\lambda I)v = 0\\)
\nso for \\(\\lambda_1=\\var{lambda1}\\)
\n\\(\\begin{pmatrix} \\simplify{{a11}-{lambda1}}&\\var{a12}\\\\ \\var{a21}&\\simplify{{a22}-{lambda1}}\\\\ \\end{pmatrix}\\begin{pmatrix} x\\\\ \\var{a21}\\\\ \\end{pmatrix}=0\\)
\nthus
\n\\(\\var{a21}x+\\simplify{{a22}-{lambda1}}*\\var{a21}=0\\)
\n\\(\\Rightarrow ~ \\var{a21}x=-\\simplify{({a22}-{lambda1})*{a21}}\\)
\n\\(\\Rightarrow ~ x=-\\simplify{({a22}-{lambda1})}\\)
\n", "name": "Maria's copy of Eigenvalues and one eigenvector of a 2x2 matrix", "variablesTest": {"maxRuns": 100, "condition": ""}, "ungrouped_variables": ["a11", "c1", "a12", "k", "a21", "a22", "lambda1", "lambda2"], "statement": "Given the matrix
\n\\(A =\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\)
", "rulesets": {}, "functions": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "This question concerns the evaluation of the eigenvalues and corresponding eigenvectors of a 2x2 matrix.
"}, "variable_groups": [], "preamble": {"js": "", "css": ""}, "extensions": [], "tags": [], "variables": {"k": {"description": "", "name": "k", "group": "Ungrouped variables", "definition": "random(1..6#1)", "templateType": "randrange"}, "lambda2": {"description": "", "name": "lambda2", "group": "Ungrouped variables", "definition": "max({c1},{a11}+{a22}-{c1})", "templateType": "anything"}, "c1": {"description": "", "name": "c1", "group": "Ungrouped variables", "definition": "random(14..20#1)", "templateType": "randrange"}, "a22": {"description": "", "name": "a22", "group": "Ungrouped variables", "definition": "{k}*{a21}+{c1}", "templateType": "anything"}, "lambda1": {"description": "", "name": "lambda1", "group": "Ungrouped variables", "definition": "min({c1},{a11}+{a22}-{c1})", "templateType": "anything"}, "a11": {"description": "", "name": "a11", "group": "Ungrouped variables", "definition": "random(1..10#1)", "templateType": "randrange"}, "a21": {"description": "", "name": "a21", "group": "Ungrouped variables", "definition": "random(1..5#1)", "templateType": "randrange"}, "a12": {"description": "", "name": "a12", "group": "Ungrouped variables", "definition": "k*(a11-c1)", "templateType": "anything"}}, "parts": [{"showFeedbackIcon": true, "scripts": {}, "type": "gapfill", "extendBaseMarkingAlgorithm": true, "sortAnswers": false, "showCorrectAnswer": true, "unitTests": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"scripts": {}, "type": "numberentry", "correctAnswerStyle": "plain", "precisionPartialCredit": 0, "correctAnswerFraction": false, "maxValue": "lambda1", "marks": 1, "precisionType": "dp", "mustBeReduced": false, "unitTests": [], "showFeedbackIcon": true, "showPrecisionHint": false, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "allowFractions": false, "showCorrectAnswer": true, "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "minValue": "lambda1", "variableReplacements": [], "precision": 0, "precisionMessage": "You have not given your answer to the correct precision."}, {"scripts": {}, "type": "numberentry", "correctAnswerStyle": "plain", "precisionPartialCredit": 0, "correctAnswerFraction": false, "maxValue": "lambda2", "marks": 1, "precisionType": "dp", "mustBeReduced": false, "unitTests": [], "showFeedbackIcon": true, "showPrecisionHint": false, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "allowFractions": false, "showCorrectAnswer": true, "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "minValue": "lambda2", "variableReplacements": [], "precision": 0, "precisionMessage": "You have not given your answer to the correct precision."}], "marks": 0, "variableReplacements": [], "customMarkingAlgorithm": "", "prompt": "Calculate the eigenvalues of the matrix A
\n\\(\\lambda_1\\) is the lesser of the two eigenvalues and \\(\\lambda_2\\) is the greater of the two eigenvalues;
\n\\(\\lambda_1\\) = [[0]]
\n\\(\\lambda_2\\) = [[1]]
"}, {"showFeedbackIcon": true, "scripts": {}, "type": "gapfill", "extendBaseMarkingAlgorithm": true, "sortAnswers": false, "showCorrectAnswer": true, "unitTests": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"scripts": {}, "type": "numberentry", "correctAnswerStyle": "plain", "precisionPartialCredit": 0, "correctAnswerFraction": false, "maxValue": "{lambda1}-{a22}", "marks": 1, "precisionType": "dp", "mustBeReduced": false, "unitTests": [], "showFeedbackIcon": true, "showPrecisionHint": false, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "allowFractions": false, "showCorrectAnswer": true, "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "minValue": "{lambda1}-{a22}", "variableReplacements": [], "precision": 0, "precisionMessage": "You have not given your answer to the correct precision."}], "marks": 0, "variableReplacements": [], "customMarkingAlgorithm": "", "prompt": "For the lesser eigenvalue \\(\\lambda_1\\) the corresponding eigenvector is \\(v_1=\\begin{pmatrix}x\\\\ \\var{a21}\\\\ \\end{pmatrix}\\)
\nEnter the value for \\(x=\\) [[0]]
\n"}], "type": "question", "contributors": [{"name": "Peter Johnston", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/771/"}, {"name": "Owen Jepps", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1195/"}, {"name": "Timothy Gould", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1466/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}]}]}], "contributors": [{"name": "Peter Johnston", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/771/"}, {"name": "Owen Jepps", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1195/"}, {"name": "Timothy Gould", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1466/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}]}