// Numbas version: finer_feedback_settings {"name": "Maria's copy of JD's copy of Polynomial Graph 1", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {}, "statement": "
Select the true statements about the following graph.
\n{geogebra_applet('https://ggbm.at/aXxv2ECN', defs, [])}
", "variables": {"defs": {"name": "defs", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "[\n ['a',a],\n ['b',b],\n ['c',c],\n ['n',n]\n]"}, "b": {"name": "b", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(-3..3#0.5)"}, "a": {"name": "a", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(-3..3#0.5)"}, "y2": {"name": "y2", "templateType": "anything", "description": "y2
", "group": "Ungrouped variables", "definition": "n*((-b)^3)/3 + 0.5*(a+b)*(-b)^2+(a*b)*(-b)+c"}, "y1": {"name": "y1", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "n*((-a)^3)/3 + 0.5*(a+b)*(-a)^2+(a*b)*(-a)+c"}, "n": {"name": "n", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(-1,1)"}, "c": {"name": "c", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(-3..3#0.5)"}, "D": {"name": "D", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "(a+b)^2 - 4*a*b*n"}}, "variablesTest": {"maxRuns": "200", "condition": "a<>b and abs(b-a)>1 and abs(y1)<10 and abs(y2)<10 and D>0"}, "ungrouped_variables": ["a", "b", "c", "defs", "D", "n", "y1", "y2"], "preamble": {"js": "", "css": ""}, "tags": [], "variable_groups": [], "functions": {"graph": {"parameters": [], "language": "jme", "definition": "geogebra_applet('https://ggbm.at/aXxv2ECN', defs, [])", "type": "html"}}, "advice": "This is a function. The graph passes the vertical line test, because a vertical line would touch only one point on the curve. That means each input ($x$-axis, domain) goes to one output ($y$-axis, range).
\nThis is a many-to-one map. Some of the range values can be obtained from different domain values.
\nThis function does not have an inverse function. The graph fails the horizontal line test, because a horizontal line would make contact with more than one point on the curve.
", "name": "Maria's copy of JD's copy of Polynomial Graph 1", "extensions": ["geogebra"], "parts": [{"matrix": ["-1", "1", "-1", "1", "-1", "-1", "1"], "showCorrectAnswer": true, "distractors": ["", "", "", "", "", "", ""], "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "type": "m_n_2", "warningType": "none", "prompt": "One-to-one map
", "Many-to-one map
", "One-to-many map
", "This graph is a function.
", "This graph is not a function.
", "Inverse function exists.
", "Inverse function does not exist.
"], "minAnswers": "2", "displayType": "checkbox", "scripts": {}, "variableReplacements": [], "maxMarks": 0, "shuffleChoices": true, "maxAnswers": 0, "minMarks": 0, "displayColumns": 0}], "metadata": {"description": "This uses an embedded Geogebra graph of a cubic polynomial with random coefficients set by NUMBAS. Student has to decide what kind of map it represents and whether an inverse function exists.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "contributors": [{"name": "Adrian Jannetta", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/164/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}, {"name": "JD Ichwan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3389/"}]}]}], "contributors": [{"name": "Adrian Jannetta", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/164/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}, {"name": "JD Ichwan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3389/"}]}