// Numbas version: finer_feedback_settings {"name": "Maria's copy of Combining Logarithm Rules to Solve Equations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"marks": 0, "showCorrectAnswer": true, "gaps": [{"showFeedbackIcon": true, "showCorrectAnswer": true, "variableReplacements": [], "type": "jme", "showpreview": true, "scripts": {}, "checkvariablenames": false, "checkingaccuracy": 0.001, "marks": "2", "answer": "{b}", "vsetrangepoints": 5, "checkingtype": "absdiff", "vsetrange": [0, 1], "expectedvariablenames": [], "variableReplacementStrategy": "originalfirst"}], "prompt": "
Solve for $x$.
\n$\\log_\\var{b1}(x-\\var{b2})-\\log_\\var{b1}\\left(\\displaystyle\\frac{1}{x}\\right)=\\var{b4}$
\n$x=$ [[0]]
", "variableReplacements": [], "showFeedbackIcon": true, "scripts": {}, "type": "gapfill", "variableReplacementStrategy": "originalfirst"}, {"marks": 0, "showCorrectAnswer": true, "gaps": [{"showFeedbackIcon": true, "showCorrectAnswer": true, "variableReplacements": [], "type": "jme", "showpreview": true, "scripts": {}, "checkvariablenames": false, "notallowed": {"strings": ["*", ")^"], "partialCredit": 0, "message": "", "showStrings": false}, "checkingaccuracy": 0.001, "marks": "2", "answer": "e^({m}/{p})/{v}", "vsetrangepoints": 5, "checkingtype": "absdiff", "vsetrange": [0, 1], "expectedvariablenames": [], "variableReplacementStrategy": "originalfirst"}], "prompt": "Solve for $x$ and leave your answer in the form $x=\\displaystyle\\frac{e^{a}}{b}$.
\n$\\var{p}\\ln(x)+\\ln(\\var{q})=\\var{m}$
\n$x=$ [[0]]
", "variableReplacements": [], "showFeedbackIcon": true, "stepsPenalty": 0, "scripts": {}, "type": "gapfill", "steps": [{"type": "information", "marks": 0, "showCorrectAnswer": true, "variableReplacements": [], "showFeedbackIcon": true, "scripts": {}, "prompt": "You may find the following conversion useful
\n\\[\\ln(x)=\\log_e(x)\\]
", "variableReplacementStrategy": "originalfirst"}], "variableReplacementStrategy": "originalfirst"}], "variables": {"m": {"definition": "random(2..20)", "group": "part c", "name": "m", "description": "", "templateType": "anything"}, "x1": {"definition": "repeat(random(2..20),8)", "group": "Ungrouped variables", "name": "x1", "description": "", "templateType": "anything"}, "b4": {"definition": "random(2..4 except b1)", "group": "Ungrouped variables", "name": "b4", "description": "", "templateType": "anything"}, "z1": {"definition": "random(2..6 except y1)", "group": "Ungrouped variables", "name": "z1", "description": "", "templateType": "anything"}, "v": {"definition": "random(2..10)", "group": "part c", "name": "v", "description": "", "templateType": "anything"}, "p": {"definition": "random(3..6)", "group": "part c", "name": "p", "description": "", "templateType": "anything"}, "b": {"definition": "c/2", "group": "Ungrouped variables", "name": "b", "description": "", "templateType": "anything"}, "y1": {"definition": "random(2..6)", "group": "Ungrouped variables", "name": "y1", "description": "", "templateType": "anything"}, "b2": {"definition": "b-2", "group": "Ungrouped variables", "name": "b2", "description": "", "templateType": "anything"}, "q": {"definition": "v^p", "group": "part c", "name": "q", "description": "", "templateType": "anything"}, "c": {"definition": "b1^b4", "group": "Ungrouped variables", "name": "c", "description": "", "templateType": "anything"}, "b1": {"definition": "random(2..8 #2)", "group": "Ungrouped variables", "name": "b1", "description": "", "templateType": "anything"}}, "extensions": [], "variable_groups": [{"variables": ["p", "v", "q", "m"], "name": "part c"}], "variablesTest": {"condition": "", "maxRuns": 100}, "preamble": {"js": "", "css": ""}, "statement": "", "ungrouped_variables": ["x1", "y1", "z1", "b1", "c", "b4", "b", "b2"], "rulesets": {}, "name": "Maria's copy of Combining Logarithm Rules to Solve Equations", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Apply and combine logarithm laws in a given equation to find the value of $x$.
"}, "functions": {}, "advice": "We can use the logarithm law
\n\\[k\\log_a(x)=\\log_a(x^k)\\text{,}\\]
\nto also give a more specific rule
\n\\[\\begin{align}
\\log_a\\left(\\frac{1}{x}\\right)&=\\log_a(x^{-1})\\\\
&=-\\log_a(x)\\text{.}
\\end{align}\\]
This means we can write our expression as
\n\\[\\log_\\var{b1}(x-\\var{b2})+\\log_\\var{b1}({x})=\\var{b4}\\text{.}\\]
\nThen using the rule
\n\\[\\log_a(x)+\\log_a(y)=\\log_a(x\\times y)\\text{,}\\]
\nwe can write our equation as
\n\\[\\begin{align}
\\log_\\var{b1}(x(x-\\var{b2}))&=\\var{b4}\\\\
\\log_\\var{b1}(x^2-\\var{b2}x)&=\\var{b4}\\text{.}\\\\
\\end{align}\\]
We then rely on the definition of $\\log_a$
\n\\[b=a^c \\Longleftrightarrow \\log_{a}b=c\\]
\nto write our equation as
\n\\[\\begin{align}
x^2-\\var{b2}x&=\\var{b1}^\\var{b4}\\\\
&=\\var{b1^b4}\\text{.}
\\end{align}\\]
We can then write out our equation and solve either by factorising or using the quadratic formula;
\n\\[\\begin{align}
x^2-\\var{b2}x-\\var{b1^{b4}}&=0\\\\
(x+2)(x-\\var{b})&=0\\text{.}
\\end{align}\\]
As logarithms can only be applied to positive numbers, the only possible value for $x$ is $\\var{b}$.
\n$\\ln(x)$ is a shorthand for $\\log_e(x)$, so we can apply the same laws of logarithms here.
\nTherefore applying the rule
\n\\[k\\log_a(x)=\\log_a(x^k)\\]
\nwe can write our equation as
\n\\[\\ln(x^\\var{p})+\\ln(\\var{q})=\\var{m}\\text{.}\\]
\nThen using the rule
\n\\[\\log_a(x)+\\log_a(y)=\\log_a(x\\times y)\\]
\nwe can write our equation as
\n\\[\\ln(\\var{q}x^\\var{p})=\\var{m}\\text{.}\\]
\nAs $\\ln=\\log_e$ we can use
\n\\[a=b^c \\Longleftrightarrow \\log_ba=c\\]
\nto write our equation as
\n\\[\\var{q}x^\\var{p}=e^\\var{m}\\text{.}\\]
\nWe then just need to rearrange our equation
\n\\[\\begin{align}
\\var{q}x^\\var{p}&=e^\\var{m}\\\\[0.5em]
x^\\var{p}&=\\frac{e^\\var{m}}{\\var{q}}\\\\[0.5em]
x&=\\frac{e^{\\var{m}/\\var{p}}}{\\var{q^(1/{p})}}
\\end{align}\\]