// Numbas version: finer_feedback_settings {"name": "Maria's copy of Arithmetics of complex numbers III", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"showFeedbackIcon": true, "prompt": "
$\\displaystyle \\simplify[std]{{c1}/{z1}} = $ [[0]]
", "customName": "", "variableReplacements": [], "type": "gapfill", "scripts": {}, "useCustomName": false, "showCorrectAnswer": true, "marks": 0, "gaps": [{"showCorrectAnswer": true, "customName": "", "useCustomName": false, "valuegenerators": [], "marks": 1, "unitTests": [], "customMarkingAlgorithm": "", "failureRate": 1, "extendBaseMarkingAlgorithm": true, "type": "jme", "showFeedbackIcon": true, "variableReplacements": [], "vsetRangePoints": 5, "checkVariableNames": false, "answerSimplification": "std", "scripts": {}, "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "answer": "{c1*re(z1)}/{abs(z1)^2}-{c1*im(z1)}/{abs(z1)^2}*i", "showPreview": true, "mustmatchpattern": {"pattern": "`+-((integer:$n/integer:$n`?))`? + ((`+-integer:$n`?/integer:$n`?)*i `| `+-i)`?", "nameToCompare": "", "message": "Your answer is not in the form $a+bi$.", "partialCredit": 0}, "checkingAccuracy": 0.001, "vsetRange": [0, 1]}], "customMarkingAlgorithm": "", "sortAnswers": false, "unitTests": [], "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst"}, {"showFeedbackIcon": true, "prompt": "$\\displaystyle \\simplify[std]{{c2}/{z2}}\\;=\\;$[[0]]
", "customName": "", "variableReplacements": [], "type": "gapfill", "scripts": {}, "useCustomName": false, "showCorrectAnswer": true, "marks": 0, "gaps": [{"showCorrectAnswer": true, "customName": "", "useCustomName": false, "valuegenerators": [], "marks": 1, "unitTests": [], "customMarkingAlgorithm": "", "failureRate": 1, "extendBaseMarkingAlgorithm": true, "type": "jme", "showFeedbackIcon": true, "variableReplacements": [], "vsetRangePoints": 5, "checkVariableNames": false, "answerSimplification": "std", "scripts": {}, "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "answer": "{c2*re(z2)}/{abs(z2)^2}-{c2*im(z2)}/{abs(z2)^2}*i", "showPreview": true, "mustmatchpattern": {"pattern": "`+-((integer:$n/integer:$n`?))`? + ((`+-integer:$n`?/integer:$n`?)*i `| `+-i)`?", "nameToCompare": "", "message": "Your answer is not in the form $a+bi$.", "partialCredit": 0}, "checkingAccuracy": 0.001, "vsetRange": [0, 1]}], "customMarkingAlgorithm": "", "sortAnswers": false, "unitTests": [], "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst"}, {"showFeedbackIcon": true, "prompt": "$\\displaystyle \\simplify[std]{{z1}/{z3}}\\;=\\;$[[0]].
\nDo not include brackets in your answer.
", "customName": "", "variableReplacements": [], "type": "gapfill", "scripts": {}, "useCustomName": false, "showCorrectAnswer": true, "marks": 0, "gaps": [{"showCorrectAnswer": true, "customName": "", "useCustomName": false, "valuegenerators": [], "marks": 1, "unitTests": [], "customMarkingAlgorithm": "", "failureRate": 1, "extendBaseMarkingAlgorithm": true, "type": "jme", "showFeedbackIcon": true, "variableReplacements": [], "vsetRangePoints": 5, "checkVariableNames": false, "answerSimplification": "std", "scripts": {}, "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "answer": "{re(z1*conj(z3))}/{abs(z3)^2}+{im(z1*conj(z3))}/{abs(z3)^2}*i", "showPreview": true, "mustmatchpattern": {"pattern": "`+-((integer:$n/integer:$n`?))`? + ((`+-integer:$n`?/integer:$n`?)*i `| `+-i)`?", "nameToCompare": "", "message": "Your answer is not in the form $a+bi$.", "partialCredit": 0}, "checkingAccuracy": 0.001, "vsetRange": [0, 1]}], "customMarkingAlgorithm": "", "sortAnswers": false, "unitTests": [], "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst"}, {"showFeedbackIcon": true, "prompt": "$\\displaystyle \\simplify[std]{{z3}/{z2}}\\;=\\;$[[0]].
", "customName": "", "variableReplacements": [], "type": "gapfill", "scripts": {}, "useCustomName": false, "showCorrectAnswer": true, "marks": 0, "gaps": [{"showCorrectAnswer": true, "customName": "", "useCustomName": false, "valuegenerators": [], "marks": 1, "unitTests": [], "customMarkingAlgorithm": "", "failureRate": 1, "extendBaseMarkingAlgorithm": true, "type": "jme", "showFeedbackIcon": true, "variableReplacements": [], "vsetRangePoints": 5, "checkVariableNames": false, "answerSimplification": "std", "scripts": {}, "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "answer": "{re(z3*conj(z2))}/{abs(z2)^2}+{im(z3*conj(z2))}/{abs(z2)^2}*i", "showPreview": true, "mustmatchpattern": {"pattern": "`+-((integer:$n/integer:$n`?))`? + ((`+-integer:$n`?/integer:$n`?)*i `| `+-i)`?", "nameToCompare": "", "message": "Your answer is not in the form $a+bi$.", "partialCredit": 0}, "checkingAccuracy": 0.001, "vsetRange": [0, 1]}], "customMarkingAlgorithm": "", "sortAnswers": false, "unitTests": [], "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst"}], "variables": {"c2": {"definition": "random(1..5)", "templateType": "anything", "name": "c2", "description": "", "group": "Ungrouped variables"}, "z1": {"definition": "s2*random(1..9)+s1*random(1..9)*i", "templateType": "anything", "name": "z1", "description": "", "group": "Ungrouped variables"}, "s2": {"definition": "random(1,-1)", "templateType": "anything", "name": "s2", "description": "", "group": "Ungrouped variables"}, "s1": {"definition": "random(1,-1)", "templateType": "anything", "name": "s1", "description": "", "group": "Ungrouped variables"}, "a3": {"definition": "s3*random(1..9)", "templateType": "anything", "name": "a3", "description": "", "group": "Ungrouped variables"}, "s4": {"definition": "random(1,-1)", "templateType": "anything", "name": "s4", "description": "", "group": "Ungrouped variables"}, "s3": {"definition": "random(1,-1)", "templateType": "anything", "name": "s3", "description": "", "group": "Ungrouped variables"}, "z3": {"definition": "rz3+s1*random(1..9)*i", "templateType": "anything", "name": "z3", "description": "", "group": "Ungrouped variables"}, "z2": {"definition": "re(z1)+s2*random(1,2)+s4*random(1..9)*i", "templateType": "anything", "name": "z2", "description": "", "group": "Ungrouped variables"}, "c1": {"definition": "s3*random(1..9)", "templateType": "anything", "name": "c1", "description": "", "group": "Ungrouped variables"}, "rz3": {"definition": "if(a3=re(z1),a3+random(1,-1),a3)", "templateType": "anything", "name": "rz3", "description": "", "group": "Ungrouped variables"}}, "extensions": [], "variable_groups": [], "variablesTest": {"condition": "", "maxRuns": 100}, "preamble": {"js": "", "css": ""}, "statement": "Express the following in the form $a+bi$.
\nInput $a$ and $b$ as fractions or integers and not as decimals.
", "ungrouped_variables": ["s3", "s2", "s1", "s4", "a3", "rz3", "c2", "c1", "z1", "z2", "z3"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus", "!collectLikeFractions"]}, "name": "Maria's copy of Arithmetics of complex numbers III", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Inverse and division of complex numbers. Four parts.
"}, "functions": {}, "advice": "\n \n \nDivision of two complex numbers can be performed by mutiplying both the numerator and denominator by the conjugate of the denominator.
Suppose that \\[ z = \\frac{a+bi}{c+di},\\;\\; c+di \\neq 0\\] then we have:
\\[\\begin{eqnarray*}\n \n z&=&\\frac{a+bi}{c+di}\\\\\n \n &=&\\frac{(a+bi)(c-di)}{(c+di)(c-di)}\\\\\n \n &=&\\frac{(ac+bd)+(bc-ad)i}{c^2+d^2}\\\\\n \n &=&\\frac{ac+bd}{c^2+d^2}+\\frac{bc-ad}{c^2+d^2}i\n \n \\end{eqnarray*}\n \n \\]
Although this is a formula for the inverse, the best way to find these complex numbers is to remember to multiply top and bottom by the conjugate of the denominator.
(a)
\\[\\begin{eqnarray*}\\simplify[std]{{c1}/{z1}} &=&\\simplify[std]{({c1}*{conj(z1)})/({z1}*{conj(z1)})}\\\\\n \n &=&\\simplify[std]{{c1*conj(z1)}/{abs(z1)^2}}\\\\\n \n &=& \\simplify[std]{{c1*re(z1)}/{abs(z1)^2}-{c1*im(z1)}/{abs(z1)^2}*i}\n \n \\end{eqnarray*} \\]
(b)
\\[\\begin{eqnarray*}\\simplify[std]{{c2}/{z2}} &=&\\simplify[std]{({c2}*{conj(z2)})/({z2}*{conj(z2)})}\\\\\n \n &=&\\simplify[std]{{c2*conj(z2)}/{abs(z2)^2}}\\\\\n \n &=& \\simplify[std]{{c2*re(z2)}/{abs(z2)^2}-{c2*im(z2)}/{abs(z2)^2}*i}\n \n \\end{eqnarray*} \\]
(c)
\\[\\begin{eqnarray*}\\simplify[std]{{z1}/{z3}} &=&\\simplify[std]{({z1}*{conj(z3)})/({z3}*{conj(z3)})}\\\\\n \n &=&\\simplify[std]{{z1*conj(z3)}/{abs(z3)^2}}\\\\\n \n &=& \\simplify[std]{{re(z1*conj(z3))}/{abs(z3)^2}+{im(z1*conj(z3))}/{abs(z3)^2}*i}\n \n \\end{eqnarray*} \\]
(d)
\\[\\begin{eqnarray*}\\simplify[std]{{z3}/{z2}} &=&\\simplify[std]{({z3}*{conj(z2)})/({z2}*{conj(z2)})}\\\\\n \n &=&\\simplify[std]{{z3*conj(z2)}/{abs(z2)^2}}\\\\\n \n &=& \\simplify[std]{{re(z3*conj(z2))}/{abs(z2)^2}+{im(z3*conj(z2))}/{abs(z2)^2}*i}\n \n \\end{eqnarray*} \\]