// Numbas version: finer_feedback_settings {"name": "Maria's copy of Choose the probability of getting certain scores on a die", "extensions": [], "custom_part_types": [], "resources": [["question-resources/dice.svg", "/srv/numbas/media/question-resources/dice.svg"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"metadata": {"description": "

First part asks for the probability of rolling an even number. Second part asks for the probability of not rolling either of two given numbers.

", "licence": "Creative Commons Attribution 4.0 International"}, "preamble": {"css": "", "js": ""}, "advice": "

For equally likely outcomes, you can calculate the probability of a particular event occurring by using the formula

\n

$\\text{Probability of an event} = \\displaystyle\\frac{\\text{number of favourable outcomes}}{\\text{total number of outcomes}}$.

\n

Rolling a fair six-sided die has six possible outcomes, each of which is equally likely.

\n

Let's say we want to find the probability of rolling a $2$. There is only one outcome which involves a $2$ being rolled, so the number of favourable outcomes is $1$.

\n

Hence using the above formula,

\n

\\begin{align}
P(\\text{rolling a $2$}) &= \\displaystyle\\frac{\\text{number of favourable outcomes}}{\\text{total number of outcomes}}\\\\
&= \\displaystyle\\frac{1}{6}
\\end{align}

\n

a)

\n

There are three possible outcomes where we roll an even number on the die:

\n\n

Using the formula for probability for equally likely outcomes, this means that

\n

\\[
P(\\text{rolling an even number}) = \\frac{\\text{number of favourable outcomes}}{\\text{total number of outcomes}}= \\frac{3}{6} = \\frac{1}{2}
\\]

\n

b) 

\n

To find the probability of not rolling a $\\var{die1}$ or a $\\var{die2}$, we use the same formula again.

\n

The total number of outcomes is still $6$.

\n

Here, we have four possible outcomes which don't involve rolling a $\\var{die1}$ or a $\\var{die2}$, i.e. when we roll any of the other numbers on the die.

\n

Using the formula,

\n

\\[
P(\\text{not rolling a $\\var{die1}$ or a $\\var{die2}$}) = \\frac{\\text{number of favourable outcomes}}{\\text{total number of outcomes}} = \\frac{4}{6} = \\frac{2}{3}
\\]

\n

", "functions": {}, "extensions": [], "rulesets": {}, "statement": "

You're going to roll a fair six-sided die.

", "variablesTest": {"maxRuns": "100", "condition": ""}, "name": "Maria's copy of Choose the probability of getting certain scores on a die", "variables": {"red": {"description": "

number of red balls in part c

", "name": "red", "definition": "random(15,19)", "group": "Ungrouped variables", "templateType": "anything"}, "die1": {"description": "

Not included number for a) ii)

", "name": "die1", "definition": "random(1..3)", "group": "Ungrouped variables", "templateType": "anything"}, "die2": {"description": "

Not included number for a) ii)

", "name": "die2", "definition": "random(4..6)", "group": "Ungrouped variables", "templateType": "anything"}}, "ungrouped_variables": ["red", "die1", "die2"], "parts": [{"variableReplacementStrategy": "originalfirst", "scripts": {}, "showCorrectAnswer": true, "marks": 0, "type": "gapfill", "gaps": [{"variableReplacementStrategy": "originalfirst", "marks": 0, "maxMarks": 0, "shuffleChoices": false, "showFeedbackIcon": true, "displayType": "radiogroup", "choices": ["

$1$

", "

$\\displaystyle\\frac{2}{3}$

", "

$\\displaystyle\\frac{1}{2}$

", "

$\\displaystyle\\frac{1}{3}$

"], "distractors": ["", "", "", ""], "scripts": {}, "showCorrectAnswer": true, "type": "1_n_2", "minMarks": 0, "displayColumns": 0, "matrix": [0, 0, "1", 0], "variableReplacements": []}], "showFeedbackIcon": true, "prompt": "

What is the probability of rolling an even number?

\n

[[0]]

", "variableReplacements": []}, {"variableReplacementStrategy": "originalfirst", "scripts": {}, "showCorrectAnswer": true, "marks": 0, "type": "gapfill", "gaps": [{"variableReplacementStrategy": "originalfirst", "marks": 0, "maxMarks": 0, "shuffleChoices": false, "showFeedbackIcon": true, "displayType": "radiogroup", "choices": ["

$0$

", "

$\\displaystyle\\frac{2}{3}$

", "

$\\displaystyle\\frac{1}{3}$

", "

$\\displaystyle\\frac{1}{4}$

"], "distractors": ["", "", "", ""], "scripts": {}, "showCorrectAnswer": true, "type": "1_n_2", "minMarks": 0, "displayColumns": 0, "matrix": ["0", "1", 0, 0], "variableReplacements": []}], "showFeedbackIcon": true, "prompt": "

What is the probability of not rolling a $\\var{die1}$ or $\\var{die2}$?

\n

[[0]]

", "variableReplacements": []}], "tags": ["taxonomy"], "variable_groups": [], "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}]}