// Numbas version: exam_results_page_options {"name": "Maria's copy of Odd Functions", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {}, "parts": [{"notationStyles": ["plain", "en", "si-en"], "scripts": {}, "prompt": "

If the \$$x\$$ coordinate of the point \$$A\$$ is \$$\\var{x1}\$$ then what is the \$$x\$$-coordinate of the point \$$B\$$?

", "maxValue": "-1*{x1}", "unitTests": [], "correctAnswerFraction": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showCorrectAnswer": true, "type": "numberentry", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": "", "showFeedbackIcon": true, "allowFractions": false, "showFractionHint": true, "correctAnswerStyle": "plain", "marks": 1, "extendBaseMarkingAlgorithm": true, "useCustomName": false, "minValue": "-1*{x1}", "adaptiveMarkingPenalty": 0}, {"notationStyles": ["plain", "en", "si-en"], "scripts": {}, "prompt": "

If the \$$y\$$ coordinate of the point \$$A\$$ is \$$\\var{a*x1^3}\$$ then what is the \$$y\$$-coordinate of the point \$$B\$$?

", "maxValue": "{-a*x1^3}", "unitTests": [], "correctAnswerFraction": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showCorrectAnswer": true, "type": "numberentry", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "customName": "", "showFeedbackIcon": true, "allowFractions": false, "showFractionHint": true, "correctAnswerStyle": "plain", "marks": 1, "extendBaseMarkingAlgorithm": true, "useCustomName": false, "minValue": "{-a*x1^3}", "adaptiveMarkingPenalty": 0}], "name": "Maria's copy of Odd Functions", "variables": {"x1": {"definition": "random(-2..2 except 0)", "description": "", "group": "Ungrouped variables", "templateType": "anything", "name": "x1"}, "a": {"definition": "random(-4..4 except 0)", "description": "", "group": "Ungrouped variables", "templateType": "anything", "name": "a"}}, "functions": {"graph": {"type": "html", "parameters": [["a", "number"]], "language": "javascript", "definition": "var div = Numbas.extensions.jsxgraph.makeBoard('400px','400px',\n{boundingbox: [-2.5, a*8.5, 2.5, -a*8.5],\n axis: true,\n showNavigation: false,\n grid: true\n});\n\nvar board = div.board;\n\nfunction f(x) {\n return a*x*x*x;\n}\n\nvar curve = board.createElement('functiongraph', f, {visible:true});\n\nvar Y = board.createElement('point', [0,1],{visible:false});\nvar O = board.createElement('point', [0,0],{visible:true, fixed: true, name:\"O\"});\n//var yaxis = board.createElement('line', [Y,O]);\n\nvar A = board.createElement('glider', [-1,a, curve], {name:\"A\"});\nvar B = board.createElement('point', [function () { return -1*A.X();}, function () {return -1*A.Y();}], {name:\"B\",color:\"blue\"});\n//var C = board.createElement('point', [0, function () {return A.Y();}], {name:\"C\",color:\"blue\",visible:false});\n\nboard.createElement('segment', [A,O],{strokeWidth:4});\nboard.createElement('segment', [O,B],{strokeWidth:4,dash:1});\n\nreturn div;"}}, "metadata": {"licence": "Creative Commons Attribution-ShareAlike 4.0 International", "description": "

A graphical introduction to the concept of even functions a symmery

"}, "statement": "

Geometrically, a function is called odd if it is symmetric in the origin. The picture below is an example of an odd function because every point \$$A\$$ on the curve can be reflected through the origin to produce another point on the curve \$$B\$$.

\n

Here is an example of where the line from \$$A\$$ to the vertical axis is shown as a solid line, and the reflection through the origin to \$$B\$$ is shown as a dashed line.

\n

{graph(a)}

\n

Algebraicly, a function has this kind of symmetry whenever

\n

\$$f(-x) \\equiv -f(x).\$$

", "tags": [], "ungrouped_variables": ["a", "x1"], "variable_groups": [], "preamble": {"css": "", "js": ""}, "advice": "

Suppose that the point \$$A\$$ has coordinates \$$(\\var{x1}, \\var{a*x1^3})\$$. Then by the symmetry of the graph the point \$$B\$$ has coordinates \$$(\\var{-1*x1}, \\var{-a*x1^3})\$$.

", "extensions": ["jsxgraph"], "variablesTest": {"maxRuns": 100, "condition": ""}, "contributors": [{"name": "Daniel Mansfield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/743/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}]}]}], "contributors": [{"name": "Daniel Mansfield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/743/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}]}