// Numbas version: finer_feedback_settings {"name": "Maria's copy of Integration: Setting up the integral to calculate the area under a graph", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": ["x11", "x12", "a1", "b1", "x21", "x22", "a2", "c2", "a3", "b3", "x31", "x32", "a4", "b4", "c4", "x41", "x42"], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "rulesets": {}, "parts": [{"showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "sortAnswers": false, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "gaps": [{"showFeedbackIcon": true, "showCellAnswerState": true, "marks": 0, "variableReplacements": [], "displayColumns": 0, "maxMarks": "1", "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "minMarks": "1", "showCorrectAnswer": true, "unitTests": [], "choices": ["
$\\int^{\\var{x12}}_{\\var{x11}}\\simplify{{a1}*x + {b1}} \\, \\textrm{d}x$
", "$\\int^{\\var{x11}}_{\\var{x12}}\\simplify{{b1}*x + {a1}} \\, \\textrm{d}x$
", "-$\\int^{\\var{x12}}_{\\var{x11}}\\simplify{{a1}*x + {b1}} \\, \\textrm{d}x$
", "$\\int \\simplify{{a1}*x + {b1}} \\, \\textrm{d}x$
"], "shuffleChoices": true, "scripts": {}, "matrix": ["1", 0, 0, 0], "type": "1_n_2", "variableReplacementStrategy": "originalfirst", "displayType": "radiogroup", "distractors": ["", "", "", ""]}, {"showFeedbackIcon": true, "showCellAnswerState": true, "marks": 0, "variableReplacements": [], "displayColumns": 0, "maxMarks": "1", "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "minMarks": "1", "showCorrectAnswer": true, "unitTests": [], "choices": ["$\\int^{\\var{x22}}_{\\var{x21}}\\simplify{{a2}*x^2 + {c2}} \\, \\textrm{d}x$
", "$\\int^{\\var{x22+2}}_{\\var{x22}}\\simplify{{a2}*x^2 + {c2}} \\, \\textrm{d}x$
", "$\\int^{\\var{x22+2}}_{\\var{x21}}\\simplify{{a2}*x^2 + {c2}} \\, \\textrm{d}x$
", "$\\int^{\\var{x21}}_{\\var{x22}} \\simplify{{a2}*x^2 + {c2}} \\, \\textrm{d}x$
"], "shuffleChoices": true, "scripts": {}, "matrix": ["1", 0, 0, 0], "type": "1_n_2", "variableReplacementStrategy": "originalfirst", "displayType": "radiogroup", "distractors": ["", "", "", ""]}, {"showFeedbackIcon": true, "showCellAnswerState": true, "marks": 0, "variableReplacements": [], "displayColumns": 0, "maxMarks": "1", "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "minMarks": "1", "showCorrectAnswer": true, "unitTests": [], "choices": ["$\\int^{\\var{x22}}_{\\var{x21}}\\simplify{{a2}*x^2 + {c2}} \\, \\textrm{d}x$
", "$\\int^{\\var{x22+2}}_{\\var{x22}}\\simplify{{a2}*x^2 + {c2}} \\, \\textrm{d}x$
", "$\\int^{\\var{x22+2}}_{\\var{x21}}\\simplify{{a2}*x^2 + {c2}} \\, \\textrm{d}x$
", "$\\int \\simplify{{a2}*x^2 + {c2}} \\, \\textrm{d}x$
"], "shuffleChoices": true, "scripts": {}, "matrix": ["0", "0", "1", 0], "type": "1_n_2", "variableReplacementStrategy": "originalfirst", "displayType": "radiogroup", "distractors": ["", "", "", ""]}, {"showFeedbackIcon": true, "showCellAnswerState": true, "marks": 0, "variableReplacements": [], "displayColumns": 0, "maxMarks": "1", "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "minMarks": "1", "showCorrectAnswer": true, "unitTests": [], "choices": ["$-\\int^{\\var{x32}}_{\\var{x31}}\\frac{1}{2}\\simplify{(x-{a3})*(x-{b3})} \\, \\textrm{d}x$
", "$\\int^{\\var{x32}}_{\\var{x31}}\\frac{1}{2}\\simplify{(x-{a3})*(x-{b3})} \\, \\textrm{d}x$
", "$-\\int^{\\var{x32+2}}_{\\var{x32}}\\frac{1}{2}\\simplify{(x-{a3})*(x-{b3})} \\, \\textrm{d}x$
", "$\\int^{\\var{x32+2}}_{\\var{x32}}\\frac{1}{2}\\simplify{(x-{a3})*(x-{b3})} \\, \\textrm{d}x$
"], "shuffleChoices": true, "scripts": {}, "matrix": ["1", 0, 0, "0"], "type": "1_n_2", "variableReplacementStrategy": "originalfirst", "displayType": "radiogroup", "distractors": ["", "", "", ""]}, {"showFeedbackIcon": true, "showCellAnswerState": true, "marks": 0, "variableReplacements": [], "displayColumns": 0, "maxMarks": "1", "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "minMarks": "1", "showCorrectAnswer": true, "unitTests": [], "choices": ["$\\int^{\\var{x32+2}}_{\\var{x31}}\\frac{1}{2}\\simplify{(x-{a3})*(x-{b3})} \\, \\textrm{d}x$
", "$-\\int^{\\var{x32+2}}_{\\var{x31}}\\frac{1}{2}\\simplify{(x-{a3})*(x-{b3})} \\, \\textrm{d}x$
", "$\\int^{\\var{x32+2}}_{\\var{x32}}\\frac{1}{2}\\simplify{(x-{a3})*(x-{b3})} \\, \\textrm{d}x -\\int^{\\var{x32}}_{\\var{x31}}\\frac{1}{2}\\simplify{(x-{a3})*(x-{b3})} \\, \\textrm{d}x$
", "$\\int^{\\var{x32+2}}_{\\var{x32}}\\frac{1}{2}\\simplify{(x-{a3})*(x-{b3})} \\, \\textrm{d}x + \\int^{\\var{x32}}_{\\var{x31}}\\frac{1}{2}\\simplify{(x-{a3})*(x-{b3})} \\, \\textrm{d}x$
"], "shuffleChoices": true, "scripts": {}, "matrix": ["0", 0, "1", "0"], "type": "1_n_2", "variableReplacementStrategy": "originalfirst", "displayType": "radiogroup", "distractors": ["", "", "", ""]}, {"showFeedbackIcon": true, "showCellAnswerState": true, "marks": 0, "variableReplacements": [], "displayColumns": 0, "maxMarks": "1", "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "minMarks": "1", "showCorrectAnswer": true, "unitTests": [], "choices": ["$-\\int^{\\var{x42+2}}_{\\var{x42}}f(x) \\, \\textrm{d}x$
", "$\\int^{\\var{x42}}_{\\var{x41}}f(x) \\, \\textrm{d}x$
", "$\\int^{\\var{x42+2}}_{\\var{x41}}f(x) \\, \\textrm{d}x$
", "$\\int^{\\var{x42}}_{\\var{x41}}f(x) \\, \\textrm{d}x - \\int^{\\var{x42+2}}_{\\var{x42}}f(x) \\, \\textrm{d}x$
"], "shuffleChoices": true, "scripts": {}, "matrix": ["0", 0, 0, "1"], "type": "1_n_2", "variableReplacementStrategy": "originalfirst", "displayType": "radiogroup", "distractors": ["", "", "", ""]}], "showCorrectAnswer": true, "prompt": "(i) {plotgraph(1,x11,x12,-1,10,a1,b1,0)}
\nThis is the graph of the function $f(x) = \\simplify{{a1}*x+{b1}}$.
\nWhich integral corresponds to the area of the shaded region? [[0]]
\n\n(ii) {plotgraph(2,x21,x22,-5,25,a2,0,c2)}
\nThis is the graph of the function $f(x) = \\simplify{{a2}*x^2+{c2}}$.
\nWhich integral will calculate the area of the left region? [[1]]
\nWhich integral gives the total area of both shaded regions? [[2]]
\n\n(iii) {plotgraph(3,x31,x32,-3,7,a3,b3,0)}
\nThis curve has equation $y = \\frac{1}{2}\\simplify{(x-{a3})*(x-{b3})}$.
\nWhich integral gives the area of the left shaded region? [[3]]
\nWhich of these calculates the total area of the two shaded regions? [[4]]
\n\n(iv) {plotgraph(4,x41,x42,-3,7,a4,b4,c4)}
\nThis is the graph of some function $f(x)$.
\nWhich of the following gives the total area of the shaded regions? [[5]]
\n", "marks": 0, "type": "gapfill", "variableReplacementStrategy": "originalfirst", "unitTests": []}], "name": "Maria's copy of Integration: Setting up the integral to calculate the area under a graph", "advice": "See Lecture 13.3 and 13.5 for background and examples.
", "metadata": {"description": "Graphs are given with areas underneath them shaded. The student is asked to select the correct integral which calculates its area.
", "licence": "Creative Commons Attribution 4.0 International"}, "variables": {"x12": {"description": "", "name": "x12", "templateType": "anything", "definition": "random(1..4) + x11", "group": "Ungrouped variables"}, "b4": {"description": "", "name": "b4", "templateType": "anything", "definition": "a4+random(2..3)", "group": "Ungrouped variables"}, "a2": {"description": "", "name": "a2", "templateType": "anything", "definition": "1", "group": "Ungrouped variables"}, "a4": {"description": "", "name": "a4", "templateType": "anything", "definition": "random(-3..-2)", "group": "Ungrouped variables"}, "a1": {"description": "", "name": "a1", "templateType": "anything", "definition": "1", "group": "Ungrouped variables"}, "x21": {"description": "", "name": "x21", "templateType": "anything", "definition": "random(-4..-2)", "group": "Ungrouped variables"}, "c2": {"description": "", "name": "c2", "templateType": "anything", "definition": "random(1..2)", "group": "Ungrouped variables"}, "c4": {"description": "", "name": "c4", "templateType": "anything", "definition": "b4+2", "group": "Ungrouped variables"}, "x22": {"description": "", "name": "x22", "templateType": "anything", "definition": "random(1..4 except 2)+x21", "group": "Ungrouped variables"}, "x41": {"description": "", "name": "x41", "templateType": "anything", "definition": "a4", "group": "Ungrouped variables"}, "a3": {"description": "", "name": "a3", "templateType": "anything", "definition": "random(-3..-1)", "group": "Ungrouped variables"}, "x11": {"description": "", "name": "x11", "templateType": "anything", "definition": "random(1..2)", "group": "Ungrouped variables"}, "x42": {"description": "", "name": "x42", "templateType": "anything", "definition": "b4", "group": "Ungrouped variables"}, "b1": {"description": "", "name": "b1", "templateType": "anything", "definition": "random(1..3)", "group": "Ungrouped variables"}, "x31": {"description": "", "name": "x31", "templateType": "anything", "definition": "b3-random(2..3)", "group": "Ungrouped variables"}, "b3": {"description": "", "name": "b3", "templateType": "anything", "definition": "a3+random(3..4)", "group": "Ungrouped variables"}, "x32": {"description": "", "name": "x32", "templateType": "anything", "definition": "b3", "group": "Ungrouped variables"}}, "functions": {"plotgraph": {"type": "html", "language": "javascript", "definition": "// Shading under a graph! This functions plots a graph of y = a(x-r1)(x-r2)\n// It creates the board, sets it up, then returns an\n// HTML div tag containing the board.\n\n\n// Max and min x and y values for the axis.\nvar xmin = -7;\nvar xmax = 7;\n\n// First, make the JSXGraph board.\nvar div = Numbas.extensions.jsxgraph.makeBoard(\n '300px',\n '250px',\n {\n boundingBox: [xmin,ymax,xmax,ymin],\n axis: false,\n showNavigation: false,\n grid: true\n }\n);\n\n\n\n// div.board is the object created by JSXGraph, which you use to \n// manipulate elements\nvar brd = div.board; \n\n// create the x-axis.\nvar xaxis = brd.create('line',[[0,0],[1,0]], { strokeColor: 'black', fixed: true});\nvar xticks = brd.create('ticks',[xaxis,1],{\n drawLabels: true,\n label: {offset: [-4, -10]},\n minorTicks: 0\n});\n\n// create the y-axis\nvar yaxis = brd.create('line',[[0,0],[0,1]], { strokeColor: 'black', fixed: true });\n/*var yticks = brd.create('ticks',[yaxis,1],{\ndrawLabels: true,\nlabel: {offset: [-20, 0]},\nminorTicks: 0\n});\n*/\n\n\n// This function shades in the area below the graph of f\n// between the x values x1 and x2\n\nvar shade = function(f,x1,x2,colour) {\n var dataX1 = [x1,x1];\n var dataY1 = [0,f(x1)];\n\n var dataX2 = [];\n var dataY2 = [];\n for (var i = x1; i <= x2; i = i+0.1) {\n dataX2.push(i);\n dataY2.push(f(i));\n }\n\n var dataX3 = [x2,x2];\n var dataY3 = [f(x2),0];\n\n dataX = dataX1.concat(dataX2).concat(dataX3);\n dataY = dataY1.concat(dataY2).concat(dataY3);\n\nvar shading = brd.create('curve', [dataX,dataY],{strokeWidth:0, fillColor:colour, fillOpacity:0.2});\n\nreturn shading;\n}\n\n\n//Define your functions\nvar f1 = function(x) {\n return a*x+b;\n}\n\nvar f2 = function(x) {\n return a*x*x + c;\n}\n\nvar f3 = function(x) {\n return 0.5*(x-a)*(x-b);\n}\n\nvar f4 = function(x) {\n return 0.5*(x-a)*(x-b)*(x-c);\n}\n\n\n//Plot the graph and do shading\nswitch(q) {\n case 1:\n brd.create('functiongraph', [f1]);\n shade(f1,x1,x2, 'red');\n break;\n case 2:\n brd.create('functiongraph', [f2]);\n shade(f2,x1,x2,'red');\n shade(f2,x2,x2+2,'green');\n break;\n case 3:\n brd.create('functiongraph', [f3]);\n shade(f3,x1,x2,'red');\n shade(f3,x2,x2+2,'green');\n break;\n case 4:\n brd.create('functiongraph', [f4]);\n shade(f4,x1,x2,'red');\n shade(f4,x2,x2+2,'green');\n break\n}\n\n\n\nreturn div;", "parameters": [["q", "number"], ["x1", "number"], ["x2", "number"], ["ymin", "number"], ["ymax", "number"], ["a", "number"], ["b", "number"], ["c", "number"]]}}, "extensions": ["jsxgraph"], "statement": "This is a non-calculator question.
", "variable_groups": [], "tags": [], "type": "question", "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}]}]}], "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}]}