// Numbas version: finer_feedback_settings {"name": "Lois's copy of Set 2-3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"type": "question", "extensions": [], "rulesets": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": ""}, "variable_groups": [], "name": "Lois's copy of Set 2-3", "question_groups": [{"name": "", "questions": [], "pickingStrategy": "all-ordered", "pickQuestions": 0}], "parts": [{"type": "gapfill", "marks": 0, "prompt": "

Enumerate the following sets:

\n

a) $A \\cap B=\\;$[[0]]

\n

b) $B \\cap C=\\;$[[1]]

\n

c) $A \\cap C^{c}=\\;$[[2]]

\n

d) $(A^{c} \\cup C) \\cap B=\\;$[[3]]

\n

e) $(A \\cup C)^{c} \\cap B^{c}=\\;$[[4]]

\n

f) $(A \\cup B^{c}) \\cap C=\\;$[[5]]

\n

\n

Note that you input sets in the form set(a,b,c,..,z) .

\n

For example set(1,2,3)gives the set $\\{1,2,3\\}$.

\n

The empty set is input as set().

\n

Also some labour saving tips:

\n

If you want to input all integers between $a$ and $b$ inclusive then instead of writing all the elements you can input this as set(a..b).

\n

If you want to input all integers between $a$ and $b$ inclusive in steps of $c$ then this is input as set(a..b#c). So all odd integers from $-3$ to $28$ are input as set(-3..28#2).

", "showCorrectAnswer": true, "gaps": [{"type": "jme", "marks": 1, "expectedvariablenames": [], "checkvariablenames": false, "checkingaccuracy": 0.001, "scripts": {}, "variableReplacements": [], "answer": "{set1 and set2}", "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "checkingtype": "absdiff", "vsetrange": [0, 1], "showpreview": true}, {"type": "jme", "marks": 1, "expectedvariablenames": [], "checkvariablenames": false, "checkingaccuracy": 0.001, "scripts": {}, "variableReplacements": [], "answer": "{set2 and set3}", "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "checkingtype": "absdiff", "vsetrange": [0, 1], "showpreview": true}, {"type": "jme", "marks": 1, "expectedvariablenames": [], "checkvariablenames": false, "checkingaccuracy": 0.001, "scripts": {}, "variableReplacements": [], "answer": "{set1 and (universal-set3)}", "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "checkingtype": "absdiff", "vsetrange": [0, 1], "showpreview": true}, {"type": "jme", "marks": 1, "expectedvariablenames": [], "checkvariablenames": false, "checkingaccuracy": 0.001, "scripts": {}, "variableReplacements": [], "answer": "{((universal-set1) or set3) and set2}", "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "checkingtype": "absdiff", "vsetrange": [0, 1], "showpreview": true}, {"type": "jme", "marks": 1, "expectedvariablenames": [], "checkvariablenames": false, "checkingaccuracy": 0.001, "scripts": {}, "variableReplacements": [], "answer": "{(universal-(set1 or set3)) and (universal-set2)}", "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "checkingtype": "absdiff", "vsetrange": [0, 1], "showpreview": true}, {"type": "jme", "marks": 1, "expectedvariablenames": [], "checkvariablenames": false, "checkingaccuracy": 0.001, "scripts": {}, "variableReplacements": [], "answer": "{(set1 or (universal-set2)) and set3}", "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "checkingtype": "absdiff", "vsetrange": [0, 1], "showpreview": true}], "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst"}], "variablesTest": {"maxRuns": 100, "condition": ""}, "tags": [], "functions": {"mod_set": {"type": "list", "language": "javascript", "parameters": [["a", "number"], ["b", "number"], ["c", "number"]], "definition": "//returns all integers which are divisible by c betweeen a and b\nvar l=[];\nfor(var i=a;iIn this question, the universal set is  $\\mathcal{U}=\\{x \\in \\mathbb{N}\\; | \\;x \\leq \\var{a}\\}$.

\n

Let:

\n

$A=\\{x \\in \\mathbb{N}\\;|\\;\\var{b}\\leq x \\leq \\var{c}\\}$.

\n

$B=\\{x \\in \\mathbb{N}\\;|\\;x \\gt \\var{d}\\}$.

\n

$C=\\{ x \\in \\mathbb{N}\\;|\\; x \\text{ divisible by } \\var{f}\\}$.

\n

\n

", "ungrouped_variables": ["a", "b", "c", "d", "f", "universal", "set1", "set2", "set3"], "advice": "", "preamble": {"css": "", "js": ""}, "showQuestionGroupNames": false, "contributors": [{"name": "Lois Rollings", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/326/"}, {"name": "Mark Hodds", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/510/"}]}]}], "contributors": [{"name": "Lois Rollings", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/326/"}, {"name": "Mark Hodds", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/510/"}]}