// Numbas version: finer_feedback_settings {"name": "Exam06 - Mean & Standard deviation", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "variable_groups": [], "tags": [], "extensions": ["stats"], "statement": "", "metadata": {"description": "

Just showing how to use the stdev function from the stats extension to calculate the standard deviation of a list of numbers.

\n

rebelmaths

", "licence": "Creative Commons Attribution 4.0 International"}, "parts": [{"mustBeReduced": false, "type": "numberentry", "scripts": {}, "precisionMessage": "

You have not given your answer to the correct number of decimal places.

", "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "showPrecisionHint": false, "steps": [{"type": "information", "scripts": {}, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "unitTests": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "prompt": "

To calculate the population standard deviation, we can use the formula:

\n

Standard deviation = $\\sqrt{\\frac{\\Sigma (x-\\text{mean})^2}{n}}$

\n

\n

So we must:

\n", "marks": 0, "useCustomName": false, "customName": "", "customMarkingAlgorithm": ""}], "precisionPartialCredit": 0, "showCorrectAnswer": true, "precision": "2", "correctAnswerFraction": false, "stepsPenalty": "0", "marks": "5", "minValue": "{sigma}", "maxValue": "{sigma}", "useCustomName": false, "customMarkingAlgorithm": "", "strictPrecision": false, "correctAnswerStyle": "plain", "variableReplacements": [], "unitTests": [], "allowFractions": false, "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "mustBeReducedPC": 0, "precisionType": "dp", "prompt": "

Find the population standard deviation $\\sigma$ of the following list of numbers {data}.

\n

Give your answer correct to 2 d.p.

", "customName": ""}], "name": "Exam06 - Mean & Standard deviation", "variablesTest": {"maxRuns": 100, "condition": ""}, "ungrouped_variables": ["data", "sigma", "x", "mean", "var"], "preamble": {"js": "", "css": ""}, "variables": {"data": {"name": "data", "templateType": "anything", "definition": "repeat(random(1..30),x)", "group": "Ungrouped variables", "description": ""}, "x": {"name": "x", "templateType": "anything", "definition": "random(4,5,8)", "group": "Ungrouped variables", "description": ""}, "mean": {"name": "mean", "templateType": "anything", "definition": "mean(data)", "group": "Ungrouped variables", "description": ""}, "sigma": {"name": "sigma", "templateType": "anything", "definition": "stdev(data)", "group": "Ungrouped variables", "description": ""}, "var": {"name": "var", "templateType": "anything", "definition": "sigma^2", "group": "Ungrouped variables", "description": ""}}, "advice": "

To calculate the population standard deviation, $\\sigma$, we can use the formula:

\n

Population standard deviation, $\\sigma = \\sqrt{\\frac{\\Sigma (x-\\text{mean})^2}{n}}$

\n

\n

(note this is slightly different to the formula used to calculate the sample standard deviation, $s$)

\n

\n

So we must:

\n", "rulesets": {}, "type": "question", "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}