// Numbas version: finer_feedback_settings {"name": "Exam13 - Differentiation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "", "variable_groups": [], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "variablesTest": {"maxRuns": "500", "condition": "isclose(-g/(2f),2/3)"}, "parts": [{"prompt": "
Find the gradient of the curve $y$ at the point $x=\\var{d}$, giving your answer to $2$ decimal places if necessary.
\n\\[ y = \\simplify{ {a}*x^2 + {b}x + {c}} \\]
\nFirstly, differentiate.
\n$\\displaystyle \\frac{dy}{dx}=$ [[1]]
\nGradient at $x=\\var{d}\\;$ is [[0]]
", "useCustomName": false, "type": "gapfill", "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "unitTests": [], "scripts": {}, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "variableReplacements": [], "customName": "", "marks": 0, "sortAnswers": false, "customMarkingAlgorithm": "", "gaps": [{"precisionPartialCredit": 0, "type": "numberentry", "correctAnswerStyle": "plain", "precisionMessage": "You have not given your answer to the correct precision.
", "precision": "2", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "strictPrecision": false, "marks": 1, "variableReplacements": [], "notationStyles": ["plain", "en", "si-en"], "maxValue": "2*a*d+b", "allowFractions": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true, "mustBeReduced": false, "precisionType": "dp", "showPrecisionHint": false, "useCustomName": false, "unitTests": [], "customName": "", "minValue": "2*a*d+b", "customMarkingAlgorithm": "", "scripts": {}}, {"failureRate": 1, "showPreview": true, "vsetRange": [0, 1], "valuegenerators": [{"value": "", "name": "x"}], "useCustomName": false, "type": "jme", "checkVariableNames": false, "showCorrectAnswer": true, "vsetRangePoints": 5, "extendBaseMarkingAlgorithm": true, "checkingAccuracy": 0.001, "unitTests": [], "scripts": {}, "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "variableReplacements": [], "customName": "", "marks": 1, "answer": "2*{a}*x+{b}", "customMarkingAlgorithm": ""}]}, {"prompt": "Find the coordinates of the turning point of the function below and state whether it is a maximum or a minimum point. Give your answers to $2$ decimal places where necessary.
\n$y=\\simplify {{f}x^2+{g}x+{h}}$
\nFirstly, find the first and second derivatives $y$.
\n$\\displaystyle \\frac{dy}{dx}=$ [[2]]
\n$\\displaystyle \\frac{d^2y}{dx^2}=$ [[3]]
\n\nSecondly, find $x$ such that $\\displaystyle \\frac{dy}{dx}=0$.
\n$x$-coordinate of the turning point $=$ [[0]]
\n$y$-coordinate of the turning point $=$ [[1]]
\nThe turning point is a [[4]]
\n\n", "useCustomName": false, "type": "gapfill", "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "unitTests": [], "scripts": {}, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "variableReplacements": [], "customName": "", "marks": 0, "sortAnswers": false, "customMarkingAlgorithm": "", "gaps": [{"precisionPartialCredit": 0, "type": "numberentry", "correctAnswerStyle": "plain", "precisionMessage": "You have not given your answer to the correct precision.
", "precision": "2", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "strictPrecision": false, "marks": 1, "variableReplacements": [], "notationStyles": ["plain", "en", "si-en"], "maxValue": "-g/(2*f)", "allowFractions": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true, "mustBeReduced": false, "precisionType": "dp", "showPrecisionHint": false, "useCustomName": false, "unitTests": [], "customName": "", "minValue": "-g/(2*f)", "customMarkingAlgorithm": "", "scripts": {}}, {"precisionPartialCredit": 0, "type": "numberentry", "correctAnswerStyle": "plain", "precisionMessage": "You have not given your answer to the correct precision.
", "precision": "2", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "strictPrecision": false, "marks": 1, "variableReplacements": [], "notationStyles": ["plain", "en", "si-en"], "maxValue": "g^2/(4*f)-g^2/(2*f)+h", "allowFractions": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true, "mustBeReduced": false, "precisionType": "dp", "showPrecisionHint": false, "useCustomName": false, "unitTests": [], "customName": "", "minValue": "g^2/(4*f)-g^2/(2*f)+h", "customMarkingAlgorithm": "", "scripts": {}}, {"failureRate": 1, "showPreview": true, "vsetRange": [0, 1], "valuegenerators": [{"value": "", "name": "x"}], "useCustomName": false, "type": "jme", "checkVariableNames": false, "showCorrectAnswer": true, "vsetRangePoints": 5, "extendBaseMarkingAlgorithm": true, "checkingAccuracy": 0.001, "unitTests": [], "scripts": {}, "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "variableReplacements": [], "customName": "", "marks": 1, "answer": "2*{f}*x+{g}", "customMarkingAlgorithm": ""}, {"failureRate": 1, "showPreview": true, "vsetRange": [0, 1], "valuegenerators": [], "useCustomName": false, "type": "jme", "checkVariableNames": false, "showCorrectAnswer": true, "vsetRangePoints": 5, "extendBaseMarkingAlgorithm": true, "checkingAccuracy": 0.001, "unitTests": [], "scripts": {}, "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "variableReplacements": [], "customName": "", "marks": 1, "answer": "2*{f}", "customMarkingAlgorithm": ""}, {"shuffleChoices": false, "showCellAnswerState": true, "displayColumns": 0, "useCustomName": false, "type": "1_n_2", "matrix": ["if(maximum, 1, 0)", "if(maximum, 0, 1)"], "showCorrectAnswer": true, "maxMarks": "0", "distractors": ["", ""], "displayType": "radiogroup", "extendBaseMarkingAlgorithm": true, "unitTests": [], "scripts": {}, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "variableReplacements": [], "customName": "", "marks": 0, "choices": ["maximum
", "minimum
"], "customMarkingAlgorithm": "", "minMarks": 0}]}, {"prompt": "An unpowered missile is launched vertically from the ground.
\nAt a time $t$ seconds after the instant of projection, its height, $y$ metres, above the ground is given by the formula
\n\\[ y=\\var{z}t-\\var{w}t^2. \\]
\nCalculate the maximum height reached by the missile.
\nFirstly, differentiate.
\n$\\displaystyle \\frac{dy}{dt}=$ [[0]]
\nNow use this result and your knowledge of differentiation to find the maximum height of the missile, rounding your answer to $2$ decimal places.
\n$y=$ [[1]]
", "useCustomName": false, "type": "gapfill", "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "unitTests": [], "scripts": {}, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "variableReplacements": [], "customName": "", "marks": 0, "sortAnswers": false, "customMarkingAlgorithm": "", "gaps": [{"failureRate": 1, "showPreview": true, "vsetRange": [0, 1], "valuegenerators": [{"value": "", "name": "t"}], "useCustomName": false, "type": "jme", "checkVariableNames": false, "showCorrectAnswer": true, "vsetRangePoints": 5, "extendBaseMarkingAlgorithm": true, "checkingAccuracy": 0.001, "unitTests": [], "scripts": {}, "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "variableReplacements": [], "customName": "", "marks": 1, "answer": "{z}-2*{w}*t", "customMarkingAlgorithm": ""}, {"precisionPartialCredit": 0, "type": "numberentry", "correctAnswerStyle": "plain", "precisionMessage": "You have not given your answer to the correct precision.", "precision": "2", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "strictPrecision": false, "marks": 1, "variableReplacements": [], "notationStyles": ["plain", "en", "si-en"], "maxValue": "z^2/(4w)", "allowFractions": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true, "mustBeReduced": false, "precisionType": "dp", "showPrecisionHint": false, "useCustomName": false, "unitTests": [], "customName": "", "minValue": "z^2/(4w)", "customMarkingAlgorithm": "", "scripts": {}}]}], "functions": {}, "preamble": {"js": "", "css": ""}, "tags": [], "advice": "Parts A and B
\nHere, the question takes you throught the stages needed to find the solution. The reason we differentiate is that the derivative of a function tells us its gradient at a given point, and we want to find where the function has gradient zero because when the gradient is zero we either have a maximum or a minimum point.
\nPart C
\nThe first part of this question is similar to parts A and B. The tricky bit is the second part! You need to work out the value of $t$ that produces the maximum piont but that is not the final answer - you need to use that value of $t$ to find the maximum height, which you do by substituting $t$ into the original function to find $y$.
", "rulesets": {"std": ["all", "fractionNumbers"]}, "name": "Exam13 - Differentiation", "variables": {"g": {"description": "", "templateType": "randrange", "definition": "random(-10 .. 10#1)", "name": "g", "group": "Ungrouped variables"}, "t": {"description": "", "templateType": "randrange", "definition": "random(0 .. 1#0.1)", "name": "t", "group": "Ungrouped variables"}, "a": {"description": "", "templateType": "randrange", "definition": "random(0 .. 10#0.5)", "name": "a", "group": "Ungrouped variables"}, "d": {"description": "", "templateType": "anything", "definition": "random(2..5)", "name": "d", "group": "Ungrouped variables"}, "h": {"description": "", "templateType": "randrange", "definition": "random(0 .. 5#0.5)", "name": "h", "group": "Ungrouped variables"}, "b": {"description": "", "templateType": "anything", "definition": "random(2..5)", "name": "b", "group": "Ungrouped variables"}, "maximum": {"description": "Is the stationary point a maximum?
", "templateType": "anything", "definition": "f<0", "name": "maximum", "group": "Ungrouped variables"}, "f": {"description": "", "templateType": "anything", "definition": "random(-10..10 except 0)", "name": "f", "group": "Ungrouped variables"}, "z": {"description": "", "templateType": "randrange", "definition": "random(20 .. 30#0.5)", "name": "z", "group": "Ungrouped variables"}, "c": {"description": "", "templateType": "anything", "definition": "random(2..7)", "name": "c", "group": "Ungrouped variables"}, "w": {"description": "", "templateType": "randrange", "definition": "random(2 .. 5#0.1)", "name": "w", "group": "Ungrouped variables"}}, "ungrouped_variables": ["z", "c", "b", "d", "f", "w", "a", "g", "h", "t", "maximum"], "extensions": [], "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Vicky Hall", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/659/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Vicky Hall", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/659/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}]}