// Numbas version: finer_feedback_settings {"name": "Simon's copy of Gauss elimination to solve a system of linear equations.", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"metadata": {"description": "

Solving a system of three linear equations in 3 unknowns using Gauss Elimination in 4 stages. Solutions are all integral.

", "licence": "Creative Commons Attribution 4.0 International"}, "preamble": {"css": "", "js": ""}, "parts": [{"scripts": {}, "showCorrectAnswer": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "unitTests": [], "customName": "", "prompt": "\n

Re-arrange the rows so that the third row becomes the first row, the first the second and the second the third.
WHY? Choose one of the following:
[[0]]

\n

Now write down the entries of the matrix you will use for Gaussian Elimination, remember to include the constants as the last column.

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
\\[\\left( \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\][[1]][[2]][[3]][[4]]\\[\\left) \\begin{matrix} \\phantom{.} \\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\]
[[5]][[6]][[7]][[8]]
[[9]][[10]][[11]][[12]]
\n ", "showFeedbackIcon": true, "variableReplacements": [], "gaps": [{"scripts": {}, "showCorrectAnswer": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "displayColumns": 0, "choices": ["

To make sure that there is a 1 in the first row, first column position.

", "

Because you always do this.

", "

Why not.

", "

I don't know.

"], "type": "1_n_2", "shuffleChoices": true, "displayType": "radiogroup", "unitTests": [], "minMarks": 0, "customName": "", "maxMarks": 1, "distractors": ["", "", "", ""], "showFeedbackIcon": true, "variableReplacements": [], "matrix": [1, 0, 0, 0], "customMarkingAlgorithm": "", "useCustomName": false, "showCellAnswerState": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.2, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "1", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "1", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.2, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{b}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{b}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.2, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{b*a-b}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{b*a-b}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.2, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{c3}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{c3}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.2, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{a}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{a}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.2, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{a*b-1}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{a*b-1}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.2, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{a^2*b-a-a*b}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{a^2*b-a-a*b}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.2, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{c2}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{c2}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.2, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{a*c}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{a*c}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.2, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{b*c}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{b*c}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.2, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "1", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "1", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.2, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{c1}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{c1}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}], "customMarkingAlgorithm": "", "useCustomName": false, "sortAnswers": false, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "showCorrectAnswer": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "unitTests": [], "customName": "", "prompt": "\n \n \n

Now introduce zeros in the first column below the first entry by adding:
[[0]] times the first row to the second row and
[[1]] times the first row to the third row to get the matrix:

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
\\[\\left( \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\] $\\var{1}$ $\\var{b}$ $\\var{b*a-b}$ $\\var{c3}$ \\[\\left) \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\]
$\\var{0}$ [[2]] [[3]] [[4]]
$\\var{0}$ [[5]] [[6]] [[7]]
\n \n \n \n

Next multiply the second row by [[8]] to get a 1 in the second entry in the second row.

\n \n \n ", "showFeedbackIcon": true, "variableReplacements": [], "gaps": [{"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.8, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{-a}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{-a}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.8, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{-a*c}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{-a*c}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.6, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{-1}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{-1}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.6, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{-a}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{-a}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.6, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{c2-a*c3}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{c2-a*c3}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.6, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{c*b-c*b*a}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{c*b-c*b*a}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.6, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{-a^2*b*c+1+a*b*c}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{-a^2*b*c+1+a*b*c}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.6, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{c1-a*c*c3}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{c1-a*c*c3}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.8, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{-1}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{-1}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}], "customMarkingAlgorithm": "", "useCustomName": false, "sortAnswers": false, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "showCorrectAnswer": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "unitTests": [], "customName": "", "prompt": "\n \n \n

Note that you should have multiplied the second row by a suitable number to get a $1$ in the second entry in the second row.
In this part we introduce a $0$ in the second column below the second entry in the second column by adding:
[[0]] times the second row to the third row to get the matrix:

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
\\[\\left( \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\] $\\var{1}$ $\\var{b}$ $\\var{b*a-b}$ $\\var{c3}$ \\[\\left) \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\]
$\\var{0}$ $\\var{1}$ [[1]] [[2]]
$\\var{0}$ $\\var{0}$ [[3]] [[4]]
\n \n \n \n

From this you should find:

\n \n \n \n

$z=\\;\\;$[[5]]

\n \n \n ", "showFeedbackIcon": true, "variableReplacements": [], "gaps": [{"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.8, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{-b*c+a*b*c}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{-b*c+a*b*c}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.8, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{a}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{a}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.8, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{a*c3-c2}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{a*c3-c2}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.8, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{1}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{1}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 0.8, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{b*c*(1-a)*(c2-a*c3)+c1-a*c*c3}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{b*c*(1-a)*(c2-a*c3)+c1-a*c*c3}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 2, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{z}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{z}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}], "customMarkingAlgorithm": "", "useCustomName": false, "sortAnswers": false, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "showCorrectAnswer": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "unitTests": [], "customName": "", "prompt": "\n \n \n

From the second row of the reduced matrix you find an equation involving only $y$ and $z$ and using your value for $z$ we find:

\n \n \n \n

$y=\\;\\;$[[0]]

\n \n \n \n

Then using the first row we have the equation :
\\[\\simplify[all]{x+ {b}y+{b*a-b}z={c3}}\\]

\n \n \n \n

Using this you can now find $x$:

\n \n \n \n

$x=\\;\\;$[[1]]

\n \n \n ", "showFeedbackIcon": true, "variableReplacements": [], "gaps": [{"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 3, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{y}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{y}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 2.6, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "{x}", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "{x}", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}], "customMarkingAlgorithm": "", "useCustomName": false, "sortAnswers": false, "extendBaseMarkingAlgorithm": true}], "tags": [], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "variables": {"c3": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "c3", "definition": "random(1..3)"}, "z": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "z", "definition": "c1+c2*c*(b-a*b)+c3*c*(a^2*b-a-a*b)"}, "y": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "y", "definition": "a*c3-c2-a*z"}, "a": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "a", "definition": "random(2..6)"}, "c1": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "c1", "definition": "random(1..5)"}, "c2": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "c2", "definition": "random(1..3)"}, "x": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "x", "definition": "c3-(b*a-b)*z-b*y"}, "b": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "b", "definition": "random(2..6)"}, "c": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "c", "definition": "random(1..3)"}}, "name": "Simon's copy of Gauss elimination to solve a system of linear equations.", "variable_groups": [], "ungrouped_variables": ["a", "c", "b", "c3", "c2", "y", "x", "c1", "z"], "statement": "

Solve the system of equations using Gauss Elimination
\\[\\begin{eqnarray*} &\\var{a}x&+\\;&\\var{a*b-1}y&+\\;\\var{a^2*b-a-a*b}z&=&\\var{c2}\\\\ &\\var{a*c}x&+\\;&\\var{c*b}y&+\\;z&=&\\var{c1}\\\\ &x&+\\;&\\var{b}y&+\\;\\var{b*a-b}z&=&\\var{c3} \\end{eqnarray*} \\]
Part a) Rearrange the order of the equations and represent this as a system of equations using a matrix.
Part b) Introduce zeros in the first column using the first row.
Part c) Introduce zeros in the second coumn below the second entry in the second row using the second row.
Also need to solve for $z$ using the last row of the reduced matrix.
Part d) Solve for $y$ and $x$ using the second and first rows of the reduced matrix.

", "variablesTest": {"maxRuns": 100, "condition": ""}, "functions": {}, "advice": "

We can write the system of linear equations in matrix form as follows:

\n

\\[\\begin{pmatrix} \\var{a} & \\var{a*b-1}&\\var{a^2*b-a-a*b} &\\vdots& \\var{c2}\\\\ \\var{a*c}&\\var{c*b}&1&\\vdots&\\var{c1}\\\\ 1&\\var{b}&\\var{b*a-b}&\\vdots&\\var{c3} \\end{pmatrix} \\]

\n

Rearranging the rows to give us a 1 as the upper left value gives:

\n

\\[\\begin{pmatrix} 1&\\var{b}&\\var{b*a-b}&\\vdots&\\var{c3}\\\\\\var{a} & \\var{a*b-1}&\\var{a^2*b-a-a*b} &\\vdots& \\var{c2}\\\\ \\var{a*c}&\\var{c*b}&1&\\vdots&\\var{c1} \\end{pmatrix} \\]

\n

Subtracting $\\var{a}$ lots of row 1 from row 2 gives: 

\n

\\[\\begin{pmatrix} 1&\\var{b}&\\var{b*a-b}&\\vdots&\\var{c3}\\\\ 0 & \\var{-1}&\\var{-a} &\\vdots& \\var{c2-c3*a}\\\\ \\var{a*c}&\\var{c*b}&1&\\vdots&\\var{c1} \\end{pmatrix} \\]

\n

Subtracting $\\var{a*c}$ lots of row 1 from row 3 gives: 

\n

\\[\\begin{pmatrix} 1&\\var{b}&\\var{b*a-b}&\\vdots&\\var{c3}\\\\ 0 & \\var{-1}&\\var{-a} &\\vdots& \\var{c2-c3*a}\\\\ 0 &\\var{c*b-a*c*b}&\\var{1-a^2*c*b+a*c*b}&\\vdots&\\var{c1-a*c*c3} \\end{pmatrix} \\]

\n

Now our first column is in the desired form.

\n

We can obtain a leading 1 in the second row by dividing row 2 by -1:

\n

\\[\\begin{pmatrix} 1&\\var{b}&\\var{b*a-b}&\\vdots&\\var{c3}\\\\ 0 & \\var{1}&\\var{a} &\\vdots& \\var{-c2+c3*a}\\\\0&\\var{c*b-a*c*b}&\\var{1-a^2*c*b+a*c*b}&\\vdots&\\var{c1-a*c*c3} \\end{pmatrix} \\]

\n

Adding $\\var{-(c*b-a*c*b)}$ lots of row 2 to row 3 gives:

\n

\\[\\begin{pmatrix} 1&\\var{b}&\\var{b*a-b}&\\vdots&\\var{c3}\\\\ 0 & \\var{1}&\\var{a} &\\vdots& \\var{-c2+c3*a}\\\\0&0&1&\\vdots&\\var{c1-a*c*c3-(c*b-a*c*b)*(-c2+c3*a)} \\end{pmatrix} \\]

\n

The matrix is now in upper diagonal form so we can quickly solve the system of equations as follows:

\n

The third row gives $z = \\var{c1-a*c*c3-(c*b-a*c*b)*(-c2+c3*a)}$

\n

The second row gives $y+\\var{a}z=\\var{-c2+c3*a}$, and hence $y= \\var{-c2+c3*a}-\\var{a}\\times \\var{c1-a*c*c3-(c*b-a*c*b)*(-c2+c3*a)} = \\var{-c2+c3*a-a*(c1-a*c*c3-(c*b-a*c*b)*(-c2+c3*a))}$

\n

The first row gives $x+\\var{b}y+\\var{b*a-b}z = \\var{c3}$ and hence $x= \\var{c3}-\\var{b} \\times \\var{-c2+c3*a-a*(c1-a*c*c3-(c*b-a*c*b)*(-c2+c3*a))} - \\var{b*a-b} \\times \\var{c1-a*c*c3-(c*b-a*c*b)*(-c2+c3*a)}=\\var{x}$

", "extensions": [], "type": "question", "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}