// Numbas version: exam_results_page_options {"name": "Simon's copy of Combine linearly dependent vectors to get zero", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"metadata": {"description": "

Real numbers $a,\\;b,\\;c$ and $d$ are such that $a+b+c+d=1$ and for the given vectors $\\textbf{v}_1,\\;\\textbf{v}_2,\\;\\textbf{v}_3,\\;\\textbf{v}_4$ $a\\textbf{v}_1+b\\textbf{v}_2+c\\textbf{v}_3+d\\textbf{v}_4=\\textbf{0}$. Find $a,\\;b,\\;c,\\;d$.

", "licence": "Creative Commons Attribution 4.0 International"}, "preamble": {"css": "", "js": ""}, "parts": [{"scripts": {}, "showCorrectAnswer": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "unitTests": [], "customName": "", "prompt": "

$a=$ [[0]]

\n

$b=$ [[1]]

\n

$c=$ [[2]]

\n

$d=$ [[3]]

\n

Input all values as exact decimals.

", "showFeedbackIcon": true, "variableReplacements": [], "gaps": [{"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 1, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "c1", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "c1", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 1, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "c2", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "c2", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 1, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "c3", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "c3", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}, {"scripts": {}, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "marks": 1, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "type": "numberentry", "unitTests": [], "maxValue": "c4", "customName": "", "correctAnswerFraction": false, "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "useCustomName": false, "minValue": "c4", "showFractionHint": true, "extendBaseMarkingAlgorithm": true}], "customMarkingAlgorithm": "", "useCustomName": false, "sortAnswers": false, "extendBaseMarkingAlgorithm": true}], "tags": [], "rulesets": {"std": ["all", "!collectNumbers", "!noleadingminus"]}, "variables": {"ga": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "ga", "definition": "random(-2,-1,1,2)"}, "v3": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "v3", "definition": "switch(t=3,w,t=4,z,y)"}, "z": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "z", "definition": "rowvector(-b-c,a+c,-a+b-c,a-b)"}, "v1": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "v1", "definition": "switch(t=1,w, x)"}, "w": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "w", "definition": "rowvector(-al*a+(del-2*ga)*b-del*c,(del-al)*a-(del-ga)*b+del*c,(-del+2*al)*a+ga*b-del*c,(del-2*al)*a+(del-2*ga)*b)"}, "a": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "a", "definition": "random(-3..3 except 0)"}, "c4": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "c4", "definition": "if(t=4,1/(1-del),-ga/(1-del))"}, "del": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "del", "definition": "random(0,-1,-3,-4)"}, "c2": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "c2", "definition": "if(t=2,1/(1-del),if(t=1,-al/(1-del),-(del-al-ga)/(1-del)))"}, "c": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "c", "definition": "random(-3..3 except 0)"}, "t": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "t", "definition": "random(1..4)"}, "x": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "x", "definition": "rowvector(-a+b-c,-b+c,a-c,-a+b)"}, "v2": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "v2", "definition": "switch(t=1,x,t=2,w,y)"}, "c3": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "c3", "definition": "if(t=3,1/(1-del),if(t=4,-ga/(1-del),-(del-al-ga)/(1-del)))"}, "al": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "al", "definition": "random(-2,-1,1,2)"}, "y": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "y", "definition": "rowvector(b-c,a-b+c,-a-c,a+b)"}, "b": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "b", "definition": "random(-3..3 except 0)"}, "c1": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "c1", "definition": "if(t=1,1/(1-del),-al/(1-del))"}, "v4": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "v4", "definition": "switch(t=4,w,z)"}}, "name": "Simon's copy of Combine linearly dependent vectors to get zero", "variable_groups": [], "ungrouped_variables": ["a", "x", "c", "b", "ga", "al", "y", "v1", "v2", "v3", "v4", "t", "w", "c2", "c3", "del", "c1", "z", "c4"], "statement": "

You are given the following four vectors in $\\mathbb{R}^4$: \\[\\begin{align} \\textbf{v}_1&=\\var{v1}\\\\ \\textbf{v}_2&=\\var{v2}\\\\ \\textbf{v}_3&=\\var{v3}\\\\ \\textbf{v}_4&=\\var{v4}\\end{align}\\]

\n

Show that the vectors $\\textbf{v}_1,\\;\\textbf{v}_2,\\;\\textbf{v}_3,\\;\\textbf{v}_4$ are linearly dependent by finding real numbers $a,\\;b,\\;c$ and $d$ such that \\[a\\textbf{v}_1+b\\textbf{v}_2+c\\textbf{v}_3+d\\textbf{v}_4=\\textbf{0},\\;\\;\\; a+b+c+d=1\\]where $\\textbf{0}=\\var{rowvector(0,0,0,0)}$ is the zero vector. 

\n

 

", "variablesTest": {"maxRuns": 100, "condition": ""}, "functions": {}, "advice": "

On putting $a=1-b-c-d$ we have 

\n

\\[(1-b-c-d)\\textbf{v}_1+b\\textbf{v}_2+c\\textbf{v}_3+d\\textbf{v}_4=0\\]

\n

Hence on combining the vectors and equating the four components each to $0$ we have the four equations:

\n

\\[\\begin{align} \\simplify[std]{{v1[0][0]} * (1 -b -c -d) + {v2[0][0]} * b + {v3[0][0]} * c + {v4[0][0]} * d }&= 0\\\\ \\simplify[std]{{v1[0][1]} * (1 -b -c -d) + {v2[0][1]} * b + {v3[0][1]} * c + {v4[0][1]} * d }&= 0\\\\  \\simplify[std]{{v1[0][2]} * (1 -b -c -d) + {v2[0][2]} * b + {v3[0][2]} * c + {v4[0][2]} * d }&= 0\\\\  \\simplify[std]{{v1[0][3]} * (1 -b -c -d) + {v2[0][3]} * b + {v3[0][3]} * c + {v4[0][3]} * d }&= 0\\end{align}\\]

\n

On rearranging these equations in the unknowns $b,\\;c,\\;d$ we get:

\n

\\[\\begin{align} \\simplify[std]{{v2[0][0] -v1[0][0]} * b + {v3[0][0] -v1[0][0]} * c + {v4[0][0] -v1[0][0]} * d} &= \\var{-v1[0][0]}\\\\ \\simplify[std]{{v2[0][1] -v1[0][1]} * b + {v3[0][1] -v1[0][1]} * c + {v4[0][1] -v1[0][1]} * d }&= \\var{-v1[0][1]}\\\\  \\simplify[std]{{v2[0][2] -v1[0][2]} * b + {v3[0][2] -v1[0][2]} * c + {v4[0][2] -v1[0][2]} * d }&= \\var{-v1[0][2]}\\\\  \\simplify[std]{{v2[0][3] -v1[0][3]} * b + {v3[0][3] -v1[0][3]} * c + {v4[0][3] -v1[0][3]} * d}&= \\var{-v1[0][3]}\\end{align}\\]

\n

\n

We have 4 equations in 3 unknowns. However, we can solve the first 3 equations simultaneously. One method is by writing the equations in matrix form and inverting the $3 \\times 3$ matrix obtained (an alternative method is Gaussian elimination):

\n

\n

\\[\\begin{pmatrix} \\var{v2[0][0] -v1[0][0]}& \\var{v3[0][0] -v1[0][0]} & \\var{v4[0][0] -v1[0][0]}\\\\ \\var{v2[0][1] -v1[0][1]}&\\var{v3[0][1] -v1[0][1]} &\\var{v4[0][1] -v1[0][1]} \\\\ \\var{v2[0][2] -v1[0][2]}& \\var{v3[0][2] -v1[0][2]}&\\var{v4[0][2] -v1[0][2]} \\end{pmatrix} \\begin{pmatrix} b \\\\ c \\\\ d \\end{pmatrix} = \\begin{pmatrix} \\var{-v1[0][0]}\\\\ \\var{-v1[0][1]} \\\\ \\var{-v1[0][2]} \\end{pmatrix} \\]

\n

\n

\\[\\begin{pmatrix} b \\\\ c \\\\ d \\end{pmatrix} = \\begin{pmatrix} \\var{v2[0][0] -v1[0][0]}& \\var{v3[0][0] -v1[0][0]} & \\var{v4[0][0] -v1[0][0]}\\\\ \\var{v2[0][1] -v1[0][1]}&\\var{v3[0][1] -v1[0][1]} &\\var{v4[0][1] -v1[0][1]} \\\\ \\var{v2[0][2] -v1[0][2]}& \\var{v3[0][2] -v1[0][2]}&\\var{v4[0][2] -v1[0][2]} \\end{pmatrix}^{-1} \\begin{pmatrix} \\var{-v1[0][0]}\\\\ \\var{-v1[0][1]} \\\\ \\var{-v1[0][2]} \\end{pmatrix}=\\begin{pmatrix} \\var{c2} \\\\ \\var{c3} \\\\ \\var{c4} \\end{pmatrix} \\]

\n

\n

Hence we obtain

\n

$b=\\var{c2}$, $c=\\var{c3}$, $d=\\var{c4}$ and hence $a=1- b-c-d= \\var{c1}$.

\n

\n

Substituting these values also correctly satisfy the 4th equation, so the equations are consistent and they have the unique solution given.

", "extensions": [], "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}