// Numbas version: finer_feedback_settings {"name": "nuExam13 - Differentiation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": ["z", "c", "b", "d", "f", "w", "a", "g", "h", "t", "maximum"], "variables": {"maximum": {"templateType": "anything", "group": "Ungrouped variables", "description": "

Is the stationary point a maximum?

", "definition": "f<0", "name": "maximum"}, "a": {"templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(0 .. 10#0.5)", "name": "a"}, "h": {"templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(0 .. 5#0.5)", "name": "h"}, "g": {"templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(-10 .. 10#1)", "name": "g"}, "t": {"templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(0 .. 1#0.1)", "name": "t"}, "z": {"templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(20 .. 30#0.5)", "name": "z"}, "c": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "random(2..7)", "name": "c"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "random(2..5)", "name": "b"}, "w": {"templateType": "randrange", "group": "Ungrouped variables", "description": "", "definition": "random(2 .. 5#0.1)", "name": "w"}, "d": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "random(2..5)", "name": "d"}, "f": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "random(-10..10 except 0)", "name": "f"}}, "preamble": {"js": "", "css": ""}, "name": "nuExam13 - Differentiation", "statement": "", "extensions": [], "functions": {}, "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "rulesets": {"std": ["all", "fractionNumbers"]}, "variablesTest": {"maxRuns": "500", "condition": "isclose(-g/(2f),2/3)"}, "parts": [{"gaps": [{"scripts": {}, "type": "numberentry", "useCustomName": false, "precisionType": "dp", "precisionPartialCredit": 0, "strictPrecision": false, "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "variableReplacements": [], "notationStyles": ["plain", "en", "si-en"], "marks": 1, "allowFractions": false, "customName": "", "mustBeReduced": false, "correctAnswerStyle": "plain", "minValue": "2*a*d+b", "customMarkingAlgorithm": "", "showPrecisionHint": false, "showCorrectAnswer": true, "precisionMessage": "

You have not given your answer to the correct precision.

", "maxValue": "2*a*d+b", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "mustBeReducedPC": 0, "unitTests": [], "precision": "2"}, {"checkingType": "absdiff", "vsetRange": [0, 1], "scripts": {}, "showCorrectAnswer": true, "useCustomName": false, "customMarkingAlgorithm": "", "valuegenerators": [{"value": "", "name": "x"}], "answer": "2*{a}*x+{b}", "type": "jme", "showPreview": true, "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "failureRate": 1, "variableReplacements": [], "showFeedbackIcon": true, "checkVariableNames": false, "checkingAccuracy": 0.001, "vsetRangePoints": 5, "marks": 1, "customName": "", "unitTests": []}], "sortAnswers": false, "scripts": {}, "showCorrectAnswer": true, "useCustomName": false, "customMarkingAlgorithm": "", "type": "gapfill", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "showFeedbackIcon": true, "prompt": "

Find the gradient of the curve $y$ at the point $x=\\var{d}$, giving your answer to $2$ decimal places if necessary.

\n

\\[ y = \\simplify{ {a}*x^2 + {b}x + {c}} \\]

\n

Firstly, differentiate.

\n

$\\displaystyle \\frac{dy}{dx}=$ [[1]]

\n

Gradient at $x=\\var{d}\\;$ is [[0]]

", "marks": 0, "customName": "", "unitTests": []}, {"gaps": [{"scripts": {}, "type": "numberentry", "useCustomName": false, "precisionType": "dp", "precisionPartialCredit": 0, "strictPrecision": false, "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "variableReplacements": [], "notationStyles": ["plain", "en", "si-en"], "marks": 1, "allowFractions": false, "customName": "", "mustBeReduced": false, "correctAnswerStyle": "plain", "minValue": "-g/(2*f)", "customMarkingAlgorithm": "", "showPrecisionHint": false, "showCorrectAnswer": true, "precisionMessage": "

You have not given your answer to the correct precision.

", "maxValue": "-g/(2*f)", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "mustBeReducedPC": 0, "unitTests": [], "precision": "2"}, {"scripts": {}, "type": "numberentry", "useCustomName": false, "precisionType": "dp", "precisionPartialCredit": 0, "strictPrecision": false, "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "variableReplacements": [], "notationStyles": ["plain", "en", "si-en"], "marks": 1, "allowFractions": false, "customName": "", "mustBeReduced": false, "correctAnswerStyle": "plain", "minValue": "g^2/(4*f)-g^2/(2*f)+h", "customMarkingAlgorithm": "", "showPrecisionHint": false, "showCorrectAnswer": true, "precisionMessage": "

You have not given your answer to the correct precision.

", "maxValue": "g^2/(4*f)-g^2/(2*f)+h", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "mustBeReducedPC": 0, "unitTests": [], "precision": "2"}, {"checkingType": "absdiff", "vsetRange": [0, 1], "scripts": {}, "showCorrectAnswer": true, "useCustomName": false, "customMarkingAlgorithm": "", "valuegenerators": [{"value": "", "name": "x"}], "answer": "2*{f}*x+{g}", "type": "jme", "showPreview": true, "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "failureRate": 1, "variableReplacements": [], "showFeedbackIcon": true, "checkVariableNames": false, "checkingAccuracy": 0.001, "vsetRangePoints": 5, "marks": 1, "customName": "", "unitTests": []}, {"checkingType": "absdiff", "vsetRange": [0, 1], "scripts": {}, "showCorrectAnswer": true, "useCustomName": false, "customMarkingAlgorithm": "", "valuegenerators": [], "answer": "2*{f}", "type": "jme", "showPreview": true, "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "failureRate": 1, "variableReplacements": [], "showFeedbackIcon": true, "checkVariableNames": false, "checkingAccuracy": 0.001, "vsetRangePoints": 5, "marks": 1, "customName": "", "unitTests": []}, {"scripts": {}, "showCorrectAnswer": true, "useCustomName": false, "customMarkingAlgorithm": "", "distractors": ["", ""], "shuffleChoices": false, "displayType": "radiogroup", "type": "1_n_2", "showCellAnswerState": true, "minMarks": 0, "maxMarks": "0", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "choices": ["

maximum

", "

minimum

"], "variableReplacements": [], "showFeedbackIcon": true, "matrix": ["if(maximum, 1, 0)", "if(maximum, 0, 1)"], "displayColumns": 0, "marks": 0, "customName": "", "unitTests": []}], "sortAnswers": false, "scripts": {}, "showCorrectAnswer": true, "useCustomName": false, "customMarkingAlgorithm": "", "type": "gapfill", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "showFeedbackIcon": true, "prompt": "

Find the coordinates of the turning point of the function below and state whether it is a maximum or a minimum point. Give your answers to $2$ decimal places where necessary.

\n

$y=\\simplify {{f}x^2+{g}x+{h}}$

\n

Firstly, find the first and second derivatives $y$.

\n

$\\displaystyle \\frac{dy}{dx}=$ [[2]]

\n

$\\displaystyle \\frac{d^2y}{dx^2}=$ [[3]]

\n

\n

Secondly, find $x$ such that $\\displaystyle \\frac{dy}{dx}=0$.

\n

$x$-coordinate of the turning point $=$ [[0]]

\n

$y$-coordinate of the turning point $=$ [[1]]

\n

The turning point is a [[4]]

\n

\n

", "marks": 0, "customName": "", "unitTests": []}], "variable_groups": [], "tags": [], "advice": "

Parts A and B

\n

Here, the question takes you throught the stages needed to find the solution. The reason we differentiate is that the derivative of a function tells us its gradient at a given point, and we want to find where the function has gradient zero because when the gradient is zero we either have a maximum or a minimum point.

\n

Part C

\n

The first part of this question is similar to parts A and B. The tricky bit is the second part! You need to work out the value of $t$ that produces the maximum piont but that is not the final answer - you need to use that value of $t$ to find the maximum height, which you do by substituting $t$ into the original function to find $y$.

", "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Vicky Hall", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/659/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Vicky Hall", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/659/"}, {"name": "Maria Aneiros", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3388/"}]}