// Numbas version: exam_results_page_options {"name": "Michael's copy of Partial Fractions: simple linear factors", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "functions": {}, "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "parts": [{"variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "sortAnswers": false, "marks": 0, "gaps": [{"variableReplacementStrategy": "originalfirst", "mustBeReducedPC": "50", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "scripts": {}, "marks": 1, "mustBeReduced": true, "correctAnswerFraction": true, "correctAnswerStyle": "plain", "notationStyles": ["plain", "en", "si-en"], "allowFractions": true, "showCorrectAnswer": true, "showFeedbackIcon": false, "minValue": "({F}*{a1}^2-{G}*{a1}+{H})/(({b1}-{a1})*({c1}-{a1}))", "customMarkingAlgorithm": "", "unitTests": [], "type": "numberentry", "maxValue": "({F}*{a1}^2-{G}*{a1}+{H})/(({b1}-{a1})*({c1}-{a1}))"}, {"variableReplacementStrategy": "originalfirst", "mustBeReducedPC": "50", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "scripts": {}, "marks": 1, "mustBeReduced": true, "correctAnswerFraction": true, "correctAnswerStyle": "plain", "notationStyles": ["plain", "en", "si-en"], "allowFractions": true, "showCorrectAnswer": true, "showFeedbackIcon": false, "minValue": "({F}*{b1}^2-{G}*{b1}+{H})/(({a1}-{b1})*({c1}-{b1}))", "customMarkingAlgorithm": "", "unitTests": [], "type": "numberentry", "maxValue": "({F}*{b1}^2-{G}*{b1}+{H})/(({a1}-{b1})*({c1}-{b1}))"}, {"variableReplacementStrategy": "originalfirst", "mustBeReducedPC": "50", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "scripts": {}, "marks": "1", "mustBeReduced": true, "correctAnswerFraction": true, "correctAnswerStyle": "plain", "notationStyles": ["plain", "en", "si-en"], "allowFractions": true, "showCorrectAnswer": true, "showFeedbackIcon": false, "minValue": "({F}*{c1}^2-{G}*{c1}+{H})/(({a1}-{c1})*(-{c1}+{b1}))", "customMarkingAlgorithm": "", "unitTests": [], "type": "numberentry", "maxValue": "({F}*{c1}^2-{G}*{c1}+{H})/(({a1}-{c1})*(-{c1}+{b1}))"}], "showCorrectAnswer": true, "showFeedbackIcon": true, "unitTests": [], "customMarkingAlgorithm": "", "type": "gapfill", "prompt": "

If the partial fraction breakdown is given by:

\n

\\(Q(s) =\\frac{A}{x+\\var{a1}}+\\frac{B}{x+\\var{b1}}+\\frac{C}{x+\\var{c1}}\\)

\n

Calculate the values of \\(A, B\\) and \\(C\\) and give your answers as fractions

\n

\\(A=\\) [[0]]

\n

\\(B=\\) [[1]]

\n

\\(C=\\) [[2]]

", "scripts": {}}], "tags": [], "extensions": [], "rulesets": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "name": "Michael's copy of Partial Fractions: simple linear factors", "ungrouped_variables": ["a1", "b1", "c1", "F", "G", "H"], "variables": {"b1": {"description": "", "name": "b1", "definition": "random(6..10#1)", "templateType": "randrange", "group": "Ungrouped variables"}, "G": {"description": "", "name": "G", "definition": "random(2..10#1)", "templateType": "randrange", "group": "Ungrouped variables"}, "H": {"description": "", "name": "H", "definition": "random(2..12#1)", "templateType": "randrange", "group": "Ungrouped variables"}, "c1": {"description": "", "name": "c1", "definition": "random(11..16#1)", "templateType": "randrange", "group": "Ungrouped variables"}, "F": {"description": "", "name": "F", "definition": "random(1..6#1)", "templateType": "randrange", "group": "Ungrouped variables"}, "a1": {"description": "", "name": "a1", "definition": "random(1..5#1)", "templateType": "randrange", "group": "Ungrouped variables"}}, "advice": "

\\(\\frac{\\var{F}s^2+\\var{G}s+\\var{H}}{(S+\\var{a1})(s+\\var{b1})(s+\\var{c1})}=\\frac{A}{s+\\var{a1}}+\\frac{B}{s+\\var{b1}}+\\frac{C}{s+\\var{c1}}\\)

\n

Multiply across by \\((s+\\var{a1})(s+\\var{b1})(s+\\var{c1})\\)

\n

\\(\\var{F}s^2+\\var{G}s+\\var{H}=A(s+\\var{b1})(s+\\var{c1})+B(s+\\var{a1})(s+\\var{c1})+C(s+\\var{a1})(s+\\var{b1})\\)

\n

let \\(s=-\\var{a1}\\)

\n

\\(\\var{F}(-\\var{a1})^2+\\var{G}(-\\var{a1})+\\var{H}=A(\\simplify{{b1}-{a1}})(\\simplify{{c1}-{a1}})+B(0)+C(0)\\)

\n

\\(\\simplify{{F}*{a1}^2-{G}*{a1}+{H}}=\\simplify{({b1}-{a1})*({c1}-{a1})}A\\)

\n

\\(A=\\frac{\\simplify{{F}*{a1}^2-{G}*{a1}+{H}}}{\\simplify{({b1}-{a1})*({c1}-{a1})}}\\)

\n

let \\(s=-\\var{b1}\\)

\n

\\(\\var{F}(-\\var{b1})^2+\\var{G}(-\\var{b1})+\\var{H}=A(0)+B(\\simplify{-{b1}+{a1}})(\\simplify{{c1}-{b1}})+C(0)\\)

\n

\\(\\simplify{{F}*{b1}^2-{G}*{b1}+{H}}=\\simplify{(-{b1}+{a1})*({c1}-{b1})}B\\)

\n

\\(B=\\frac{\\simplify{{F}*{b1}^2-{G}*{b1}+{H}}}{\\simplify{(-{b1}+{a1})*({c1}-{b1})}}\\)

\n

let \\(s=-\\var{c1}\\)

\n

\\(\\var{F}(-\\var{c1})^2+\\var{G}(-\\var{c1})+\\var{H}=A(0)+B(0)+C(\\simplify{-{c1}+{a1}})(\\simplify{-{c1}+{b1}})\\)

\n

\\(\\simplify{{F}*{c1}^2-{G}*{c1}+{H}}=\\simplify{(-{c1}+{a1})*(-{c1}+{b1})}C\\)

\n

\\(C=\\frac{\\simplify{{F}*{c1}^2-{G}*{c1}+{H}}}{\\simplify{(-{c1}+{a1})*(-{c1}+{b1})}}\\)

", "type": "question", "preamble": {"css": "", "js": ""}, "statement": "

Find the partial fraction breakdown of the compound fraction:

\n

\\(Q(s)=\\frac{\\var{F}x^2+\\var{G}x+\\var{H}}{(x+\\var{a1})(x+\\var{b1})(x+\\var{c1})}\\)

", "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Angharad Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/315/"}, {"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}]}]}], "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Angharad Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/315/"}, {"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}]}