// Numbas version: finer_feedback_settings {"name": "Brad's copy of nuExam08 - Normal Distribution", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"metadata": {"description": "

Given a random variable $X$  normally distributed as $\\operatorname{N}(m,\\sigma^2)$ find probabilities $P(X \\gt a),\\; a \\gt m;\\;\\;P(X \\lt b),\\;b \\lt m$.

\n

rebelmaths

", "licence": "Creative Commons Attribution 4.0 International"}, "variables": {"units1": {"name": "units1", "definition": "\"k Wh\"", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "zlower": {"name": "zlower", "definition": "precround((m-lower)/s,2)", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "p2": {"name": "p2", "definition": "1-p", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "prob2": {"name": "prob2", "definition": "precround(1-p1,2)", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "upper": {"name": "upper", "definition": "random(m+0.5s..m+1.5*s#10000)", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "m": {"name": "m", "definition": "random(30000..50000#2000)", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "p1": {"name": "p1", "definition": "precround(normalcdf(zupper,0,1),4)", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "prob1": {"name": "prob1", "definition": "precround(1-p,2)", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "amount": {"name": "amount", "definition": "\"electricity consumption\"", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "lower": {"name": "lower", "definition": "random(m-1.5*s..m-0.5s#10000)", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "stuff": {"name": "stuff", "definition": "\"a frozen foods warehouse each week in the summer months \"", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "p": {"name": "p", "definition": "precround(normalcdf(zlower,0,1),4)", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "zupper": {"name": "zupper", "definition": "precround((upper-m)/s,2)", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "s": {"name": "s", "definition": "random(5000..15000#1000)", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "prob3": {"name": "prob3", "definition": "precround(p1-p2,2)", "templateType": "anything", "description": "", "group": "Ungrouped variables"}, "tol": {"name": "tol", "definition": "0.01", "templateType": "anything", "description": "", "group": "Ungrouped variables"}}, "statement": "

The salary of an electrician is normally distributed with mean £{m} and standard deviation £{s}.

\n

 

", "name": "Brad's copy of nuExam08 - Normal Distribution", "type": "question", "advice": "

(a)

\n

Converting to $\\operatorname{N}(0,1)$

\n

$\\simplify[all,!collectNumbers]{P(X > {upper}) = P(Z > ({upper} -{m}) / {s})} = P(Z>\\var{zupper}) = 1-P(Z<\\var{zupper})=1-\\var{p1} = \\var{prob2}$ to 2 decimal places.

\n

\n

(b)

\n

$\\simplify[all,!collectNumbers]{P({lower} < X < {upper}) = P(X < {upper})-P(X < {lower})}=P(Z<\\var{zupper})-P(Z<-\\var{zlower}) =\\var{p1}-\\var{p2} = \\var{prob3}$ to 2 decimal places.

\n

\n

\n

", "tags": [], "rulesets": {}, "variable_groups": [], "extensions": ["stats"], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "functions": {}, "ungrouped_variables": ["units1", "upper", "lower", "p1", "m", "s", "zupper", "p", "amount", "p2", "tol", "zlower", "stuff", "prob2", "prob3", "prob1"], "parts": [{"showFeedbackIcon": true, "variableReplacements": [], "prompt": "

If one electrician is chosen at random, what is probability that this electrician earns over £{upper}? 

\n

Probability = [[0]](to 2  decimal places)

\n

", "extendBaseMarkingAlgorithm": true, "type": "gapfill", "marks": 0, "useCustomName": false, "gaps": [{"precision": "2", "useCustomName": false, "variableReplacements": [], "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "customName": "", "allowFractions": false, "minValue": "prob2", "precisionType": "dp", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "showPrecisionHint": true, "maxValue": "prob2", "scripts": {}, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "mustBeReduced": false, "marks": "1", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "precisionPartialCredit": 0, "mustBeReducedPC": 0, "unitTests": [], "precisionMessage": "You have not given your answer to the correct precision.", "correctAnswerFraction": false}], "scripts": {}, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "sortAnswers": false, "unitTests": [], "customName": "", "showCorrectAnswer": true}, {"showFeedbackIcon": true, "variableReplacements": [], "prompt": "

If one electrician is chosen at random, what is probability that this electrician earns between £{lower} and £{upper}?

\n

Probability = [[0]](to 2  decimal places)

", "extendBaseMarkingAlgorithm": true, "type": "gapfill", "marks": 0, "useCustomName": false, "gaps": [{"precision": "2", "useCustomName": false, "variableReplacements": [], "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "customName": "", "allowFractions": false, "minValue": "prob3", "precisionType": "dp", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "showPrecisionHint": true, "maxValue": "prob3", "scripts": {}, "extendBaseMarkingAlgorithm": true, "type": "numberentry", "mustBeReduced": false, "marks": "2", "showCorrectAnswer": true, "notationStyles": ["plain", "en", "si-en"], "precisionPartialCredit": 0, "mustBeReducedPC": 0, "unitTests": [], "precisionMessage": "You have not given your answer to the correct precision.", "correctAnswerFraction": false}], "scripts": {}, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "sortAnswers": false, "unitTests": [], "customName": "", "showCorrectAnswer": true}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}, {"name": "Brad Allison", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3394/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}, {"name": "Brad Allison", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3394/"}]}