// Numbas version: finer_feedback_settings {"name": "Philip's copy of Quotient rule - differentiate quadratic over quadratic", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "\n \n \n

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = ({a}x^2+{b})}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {2*a}x}\\]

\n \n \n \n

\\[\\simplify[std]{v = ({c} * x^2+{d})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {2*c}x}\\]

\n \n \n \n

Hence on substituting into the quotient rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*} \\frac{df}{dx}&=&\\simplify[std]{({2*a}x({c}x^2+{d})-{2*c}x({a}x^2+{b}))/({c}x^2+{d})^2}\\\\\n \n &=&\\simplify[std]{({2*a*c}x^3+{2*a*d}x-{2*c*a}x^3-{2*c*b}x)/({c}x^2+{d})^2}\\\\\n \n &=&\\simplify[std]{({2*det}x)/({c}x^2+{d})^2}\n \n \\end{eqnarray*}\\]
Hence $g(x)=\\simplify[std]{{2*det}x}$

\n \n \n ", "metadata": {"description": "

The derivative of $\\displaystyle \\frac{ax^2+b}{cx^2+d}$ is $\\displaystyle \\frac{g(x)}{(cx^2+d)^2}$. Find $g(x)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "functions": {}, "variables": {"c": {"description": "", "group": "Ungrouped variables", "definition": "if(a*d=b*c1,c1+1,c1)", "templateType": "anything", "name": "c"}, "a": {"description": "", "group": "Ungrouped variables", "definition": "random(2..9)", "templateType": "anything", "name": "a"}, "c1": {"description": "", "group": "Ungrouped variables", "definition": "random(1..8)", "templateType": "anything", "name": "c1"}, "det": {"description": "", "group": "Ungrouped variables", "definition": "a*d-b*c", "templateType": "anything", "name": "det"}, "d": {"description": "", "group": "Ungrouped variables", "definition": "s2*random(1..9)", "templateType": "anything", "name": "d"}, "s2": {"description": "", "group": "Ungrouped variables", "definition": "random(1,-1)", "templateType": "anything", "name": "s2"}, "s1": {"description": "", "group": "Ungrouped variables", "definition": "random(1,-1)", "templateType": "anything", "name": "s1"}, "b": {"description": "", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "templateType": "anything", "name": "b"}}, "parts": [{"stepsPenalty": 0, "useCustomName": false, "prompt": "\n

\\[\\simplify[std]{f(x) = ({a} * x^2+{b})/({c}x^2+{d})}\\]
You are given that \\[\\frac{df}{dx}=\\simplify[std]{g(x)/({c}x^2+{d})^2}\\]
for a polynomial $g(x)$. You are asked to find $g(x)$

\n

$g(x)=\\;$[[0]]

\n

Input numbers as fractions or integers and not as decimals.

\n

Click on Show steps for more information. You will not lose any marks by doing so.

\n ", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "showFeedbackIcon": true, "scripts": {}, "unitTests": [], "type": "gapfill", "customName": "", "marks": 0, "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "sortAnswers": false, "steps": [{"useCustomName": false, "prompt": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "showFeedbackIcon": true, "scripts": {}, "unitTests": [], "type": "information", "customName": "", "marks": 0, "variableReplacements": [], "extendBaseMarkingAlgorithm": true}], "gaps": [{"vsetRangePoints": 5, "checkingType": "absdiff", "unitTests": [], "marks": 3, "customMarkingAlgorithm": "", "vsetRange": [0, 1], "customName": "", "valuegenerators": [{"value": "", "name": "x"}], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "notallowed": {"strings": ["."], "partialCredit": 0, "showStrings": false, "message": "

Input numbers as fractions or integers and not as decimals.

"}, "useCustomName": false, "checkingAccuracy": 0.001, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "answer": "{2*det}x", "showFeedbackIcon": true, "scripts": {}, "type": "jme", "checkVariableNames": false, "failureRate": 1, "answerSimplification": "std", "showPreview": true}]}], "statement": "

Differentiate the following function $f(x)$ using the quotient rule.

", "variablesTest": {"maxRuns": 100, "condition": ""}, "extensions": [], "tags": [], "variable_groups": [], "ungrouped_variables": ["a", "c", "b", "d", "s2", "s1", "det", "c1"], "name": "Philip's copy of Quotient rule - differentiate quadratic over quadratic", "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Philip Charlton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3474/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Philip Charlton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3474/"}]}