// Numbas version: finer_feedback_settings {"name": "Brad's copy of Probability, expectation and standard deviation of Poisson distribution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": ["pre", "what", "this", "things", "number1", "descx", "else", "thismany", "something", "tol", "v", "tprob1", "sd", "tprob2", "prob2", "thisnumber", "thisaswell", "prob1"], "advice": "\n
a)
\n1. $X \\sim \\operatorname{Poisson}(\\var{thismany})$, so $\\lambda = \\var{thismany}$.
\n2. The expectation is given by $\\operatorname{E}[X]=\\lambda=\\var{thismany}$
\n3. $\\operatorname{stdev}(X)=\\sqrt{\\lambda}=\\sqrt{\\var{thismany}}=\\var{sd}$ to 3 decimal places.
\nb)
\n1. \\[ \\begin{eqnarray*}\\operatorname{P}(X = \\var{thisnumber}) &=& \\frac{e ^ { -\\var{thismany}}\\var{thismany} ^ {\\var{thisnumber}}} {\\var{thisnumber}!}\\\\& =& \\var{prob1} \\end{eqnarray*} \\] to 3 decimal places.
\n\n
2. If an employee receives a warning then he or she must have sold less than {number1}.
\nHence we need to find :
\n\\[ \\begin{eqnarray*}\\operatorname{P}(X < \\var{number1})& =& \\simplify[all,!collectNumbers]{P(X = 0) + P(X = 1) + {v}*P(X = 2)}\\\\& =& \\simplify[all,!collectNumbers]{e ^ { -thismany} + {thismany} * e ^ { -thismany} + {v} * (({thismany} ^ 2 * e ^ { -thismany}) / 2)} \\\\&=& \\var{prob2} \\end{eqnarray*} \\]
\nto 3 decimal places.
\n\n ", "variable_groups": [], "tags": ["checked2015", "MAS1403"], "variablesTest": {"condition": "", "maxRuns": 100}, "functions": {}, "showQuestionGroupNames": false, "statement": "\n
{pre} $\\var{thismany}$.
\n{something} $\\var{number1}$ {else}
\n\n ", "question_groups": [{"questions": [], "name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0}], "variables": {"tprob1": {"definition": "(thismany^thisnumber)*e^(-thismany)/fact(thisnumber)", "templateType": "anything", "name": "tprob1", "group": "Ungrouped variables", "description": ""}, "tol": {"definition": "0.001", "templateType": "anything", "name": "tol", "group": "Ungrouped variables", "description": ""}, "thisnumber": {"definition": "if(thismany<8,thismany-1, random(3..7))", "templateType": "anything", "name": "thisnumber", "group": "Ungrouped variables", "description": ""}, "tprob2": {"definition": "if(number1=2,e^(-thismany)*(1+thismany),e^(-thismany)*(1+thismany+thismany^2/2))", "templateType": "anything", "name": "tprob2", "group": "Ungrouped variables", "description": ""}, "something": {"definition": "\"Employees receive a warning if they make less than \"", "templateType": "anything", "name": "something", "group": "Ungrouped variables", "description": ""}, "else": {"definition": "\"per day.\"", "templateType": "anything", "name": "else", "group": "Ungrouped variables", "description": ""}, "pre": {"definition": "\"The mean number of sales per day at a telecommunications centre is \"", "templateType": "anything", "name": "pre", "group": "Ungrouped variables", "description": ""}, "things": {"definition": "\"sales.\"", "templateType": "anything", "name": "things", "group": "Ungrouped variables", "description": ""}, "number1": {"definition": "if(thismany<8,2, 3)", "templateType": "anything", "name": "number1", "group": "Ungrouped variables", "description": ""}, "v": {"definition": "if(number1=2,0,1)", "templateType": "anything", "name": "v", "group": "Ungrouped variables", "description": ""}, "sd": {"definition": "precround(sqrt(thismany),3)", "templateType": "anything", "name": "sd", "group": "Ungrouped variables", "description": ""}, "descx": {"definition": "\"the number of sales per day\"", "templateType": "anything", "name": "descx", "group": "Ungrouped variables", "description": ""}, "this": {"definition": "\"a randomly selected employee makes exactly \"", "templateType": "anything", "name": "this", "group": "Ungrouped variables", "description": ""}, "what": {"definition": "\"daily sales.\"", "templateType": "anything", "name": "what", "group": "Ungrouped variables", "description": ""}, "prob1": {"definition": "precround(tprob1,3)", "templateType": "anything", "name": "prob1", "group": "Ungrouped variables", "description": ""}, "thismany": {"definition": "random(5..10)", "templateType": "anything", "name": "thismany", "group": "Ungrouped variables", "description": ""}, "thisaswell": {"definition": "\"a randomly selected employee receives a warning.\"", "templateType": "anything", "name": "thisaswell", "group": "Ungrouped variables", "description": ""}, "prob2": {"definition": "precround(tprob2,3)", "templateType": "anything", "name": "prob2", "group": "Ungrouped variables", "description": ""}}, "type": "question", "preamble": {"js": "", "css": ""}, "name": "Brad's copy of Probability, expectation and standard deviation of Poisson distribution", "rulesets": {}, "parts": [{"type": "gapfill", "gaps": [{"type": "numberentry", "correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "showCorrectAnswer": true, "marks": 0.25, "maxValue": "thismany", "minValue": "thismany", "scripts": {}}, {"type": "numberentry", "correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "showCorrectAnswer": true, "marks": 0.25, "maxValue": "thismany", "minValue": "thismany", "scripts": {}}, {"type": "numberentry", "correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "showCorrectAnswer": true, "marks": 0.5, "maxValue": "sd+tol", "minValue": "sd-tol", "scripts": {}}], "showCorrectAnswer": true, "marks": 0, "scripts": {}, "prompt": "\n
Assuming a Poisson distribution for $X$, {descX}, write down the value of $\\lambda$.
\n$X \\sim \\operatorname{Poisson}(\\lambda)$
\n$\\lambda = $?[[0]]
\nFind $\\operatorname{E}[X]$ the expected {descX}.
\n$\\operatorname{E}[X]=$?[[1]]
\nFind the standard deviation for {what}.
\nStandard deviation = ? [[2]] (to 3 decimal places).
\n "}, {"type": "gapfill", "gaps": [{"type": "numberentry", "correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "showCorrectAnswer": true, "marks": 1, "maxValue": "prob1+tol", "minValue": "prob1-tol", "scripts": {}}, {"type": "numberentry", "correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "showCorrectAnswer": true, "marks": 1, "maxValue": "prob2+tol", "minValue": "prob2-tol", "scripts": {}}], "showCorrectAnswer": true, "marks": 0, "scripts": {}, "prompt": "\nFind the probability that {this} $\\var{thisnumber}$ {things}
\n$\\operatorname{P}(X=\\var{thisnumber})=$? [[0]] (to 3 decimal places).
\n\n
Find the probability that {thisaswell}
\nProbability = ? [[1]] (to 3 decimal places).
\n "}], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "notes": "\n \t\t31/12/2012:
\n \t\tCan be configured to other applications using the string variables supplied. Hence added tag sc.
\n \t\tNot as yet properly tested.
\n \t\t", "description": "\n \t\tApplication of the Poisson distribution given expected number of events per interval.
\n \t\tFinding probabilities using the Poisson distribution.
\n \t\t"}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}, {"name": "Brad Allison", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3394/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}, {"name": "Brad Allison", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3394/"}]}