// Numbas version: finer_feedback_settings {"name": "present value - annuity due", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": ["years", "period", "ipadec", "ipa", "C", "n", "P", "Prounded"], "preamble": {"css": "", "js": ""}, "variablesTest": {"maxRuns": 100, "condition": ""}, "parts": [{"variableReplacements": [], "marks": 0, "prompt": "
Suppose you are given $\\$\\var{C}$ at the beginning of each {period[2]} for $\\var{years}$ years. If the interest rate is $\\var{ipa}\\%$ per annum compounding {period[0]}, what is this cash flow worth at the beginning of the $\\var{years}$ years?
\n\n$\\$$ [[0]] (to the nearest cent)
", "useCustomName": false, "gaps": [{"variableReplacements": [], "allowFractions": false, "marks": 1, "notationStyles": ["plain", "en", "si-en"], "minValue": "P", "useCustomName": false, "showCorrectAnswer": true, "precisionMessage": "You have not given your answer to the nearest cent.", "unitTests": [], "precisionType": "dp", "correctAnswerFraction": false, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "mustBeReduced": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "scripts": {}, "maxValue": "P", "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "showPrecisionHint": false, "showFeedbackIcon": true, "precisionPartialCredit": 0, "customName": "", "strictPrecision": true, "precision": "2"}], "showFeedbackIcon": true, "showCorrectAnswer": true, "unitTests": [], "customName": "", "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "type": "gapfill", "variableReplacementStrategy": "originalfirst", "scripts": {}, "sortAnswers": false}], "variable_groups": [], "extensions": [], "advice": "You are asked to find the present value of an annuity due (since the payments are at the start of each period). Therefore we will use the present value of an annuity due formula
\n$\\displaystyle P=\\frac{C}{i}\\left(1-\\frac{1}{(1+i)^n}\\right)(1+i)$
\nwhere $P$ is the present value, $C$ is the cash flow per period, $i$ is the interest rate per period, and $n$ is the number of periods.
\nIn our situation we have,
\n$C=\\var{C}$,
\n$i=\\frac{\\var{ipa}\\%}{\\var{period[1]}}=\\frac{\\var{ipadec}}{\\var{period[1]}}$, $i=\\var{ipa}\\%=\\var{ipadec}$,
\n$n=\\var{years}\\times \\var{period[1]}=\\var{n}$, $n=\\var{n}$,
\nand therefore we have
\n$\\displaystyle P=\\frac{\\var{C}}{\\left(\\simplify[unitDenominator]{{ipadec}/{period[1]}}\\right)}\\left(1-\\frac{1}{\\left(1+\\simplify[unitDenominator]{{ipadec}/{period[1]}}\\right)^\\var{n}}\\right)\\left(1+\\simplify[unitDenominator]{{ipadec}/{period[1]}}\\right)$
\nCalculating this we find
\n$\\begin{align}P&\\approx \\var{P}\\\\&=\\$\\var{Prounded}\\quad \\text{(to the nearest cent)}\\end{align}$
", "name": "present value - annuity due", "variables": {"P": {"templateType": "anything", "definition": "(C*period[1]/ipadec)*(1-(1+ipadec/period[1])^(-n))(1+ipadec/period[1])", "description": "", "name": "P", "group": "Ungrouped variables"}, "period": {"templateType": "anything", "definition": "random([random('yearly','annually'),1,'year'],[random('half-yearly','semiannually'),2,'half-year'],['quarterly', 4, 'quarter'],['monthly',12,'month'],['daily', 365,'day'])", "description": "", "name": "period", "group": "Ungrouped variables"}, "ipadec": {"templateType": "anything", "definition": "random(0.02..0.10#0.001)", "description": "", "name": "ipadec", "group": "Ungrouped variables"}, "ipa": {"templateType": "anything", "definition": "ipadec*100", "description": "", "name": "ipa", "group": "Ungrouped variables"}, "n": {"templateType": "anything", "definition": "years*period[1]", "description": "", "name": "n", "group": "Ungrouped variables"}, "years": {"templateType": "anything", "definition": "random(3..20)", "description": "", "name": "years", "group": "Ungrouped variables"}, "C": {"templateType": "anything", "definition": "if(period[1]=365,random(1..10),random(20..300#10))", "description": "", "name": "C", "group": "Ungrouped variables"}, "Prounded": {"templateType": "anything", "definition": "precround(P,2)", "description": "", "name": "Prounded", "group": "Ungrouped variables"}}, "statement": "If you are unsure of how to do a question, click on Reveal answers to see the full working. Then, once you understand how to do the question, click on Try another question like this one to start again. Do each question repeatedly to ensure you have mastered it.
", "metadata": {"description": "Financial maths. Present value of an annuity due.", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "functions": {}, "rulesets": {}, "tags": [], "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}