// Numbas version: finer_feedback_settings {"name": "cash flow amount - ordinary perpetuity", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "functions": {}, "statement": "

If you are unsure of how to do a question, click on Reveal answers to see the full working. Then, once you understand how to do the question, click on Try another question like this one to start again. Do each question repeatedly to ensure you have mastered it.

", "extensions": [], "tags": [], "rulesets": {}, "parts": [{"scripts": {}, "prompt": "

Suppose you want to set up a scholarship or a donation that gives a regular amount at the end of every {period[2]} forever. If you have $\\$\\var{P}$ to invest at $\\var{ipa}\\%$ p.a. compounded {period[0]}, what amount would be given each {period[2]}?

\n

\n

$\\$$ [[0]] (to the nearest cent)

", "gaps": [{"scripts": {}, "useCustomName": false, "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "unitTests": [], "precisionMessage": "You have not given your answer to the nearest cent.", "precision": "2", "correctAnswerStyle": "plain", "customName": "", "minValue": "C", "showCorrectAnswer": true, "precisionType": "dp", "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "showPrecisionHint": false, "showFeedbackIcon": true, "mustBeReduced": false, "strictPrecision": true, "notationStyles": ["plain", "en", "si-en"], "marks": 1, "precisionPartialCredit": 0, "type": "numberentry", "correctAnswerFraction": false, "maxValue": "C", "variableReplacementStrategy": "originalfirst", "allowFractions": false}], "unitTests": [], "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "showFeedbackIcon": true, "type": "gapfill", "marks": 0, "useCustomName": false, "showCorrectAnswer": true, "customName": "", "sortAnswers": false, "variableReplacementStrategy": "originalfirst"}], "variables": {"period": {"group": "Ungrouped variables", "definition": "random([random('yearly','annually'),1,'year'],[random('half-yearly','semiannually'),2,'half-year'],['quarterly', 4, 'quarter'],['monthly',12,'month'],['daily', 365,'day'])", "name": "period", "description": "", "templateType": "anything"}, "ipa": {"group": "Ungrouped variables", "definition": "ipadec*100", "name": "ipa", "description": "", "templateType": "anything"}, "ipadec": {"group": "Ungrouped variables", "definition": "random(0.02..0.10#0.001)", "name": "ipadec", "description": "", "templateType": "anything"}, "C": {"group": "Ungrouped variables", "definition": "ipadec*P/period[1]", "name": "C", "description": "", "templateType": "anything"}, "Crounded": {"group": "Ungrouped variables", "definition": "precround(C,2)", "name": "Crounded", "description": "", "templateType": "anything"}, "P": {"group": "Ungrouped variables", "definition": "random(5000..100000#1000)", "name": "P", "description": "", "templateType": "anything"}}, "preamble": {"js": "", "css": ""}, "name": "cash flow amount - ordinary perpetuity", "ungrouped_variables": ["period", "ipadec", "ipa", "P", "C", "Crounded"], "metadata": {"description": "Financial maths. Cash flow amount of an ordinary perpetuity.", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

You are asked to find the cash flow amount of an ordinary perpetuity (since the payments are at the end of each period and last forever). Therefore we will use the ordinary perpetuity formula

\n

$\\displaystyle P=\\frac{C}{i}$

\n

where $P$ is the present value, $C$ is the cash flow per period and $i$ is the interest rate per period.

\n

In our situation we have,

\n

$P=\\var{P}$,

\n

$i=\\frac{\\var{ipa}\\%}{\\var{period[1]}}=\\frac{\\var{ipadec}}{\\var{period[1]}}$, $i=\\var{ipa}\\%=\\var{ipadec}$,

\n

and therefore we have

\n

$\\displaystyle \\var{P}=\\frac{C}{\\left(\\simplify[unitDenominator]{{ipadec}/{period[1]}}\\right)}$

\n

which we need to rearrange to solve for $C$.

\n

We multiply both sides by $\\left(\\simplify[unitDenominator]{{ipadec}/{period[1]}}\\right)$ (to remove the division by it)

\n

$\\displaystyle \\var{P}\\left(\\simplify[unitDenominator]{{ipadec}/{period[1]}}\\right)=C$

\n

\n

Calculating this we find 

\n

$C=\\$\\var{Crounded}\\quad \\text{(to the nearest cent)}$

", "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}