// Numbas version: finer_feedback_settings {"name": "interest rate - ordinary perpetuity", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"preamble": {"js": "", "css": ""}, "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"ipadec": {"templateType": "anything", "definition": "ippdec*period[1]", "description": "", "group": "Ungrouped variables", "name": "ipadec"}, "P": {"templateType": "anything", "definition": "random(5000..100000#1000)", "description": "", "group": "Ungrouped variables", "name": "P"}, "C": {"templateType": "anything", "definition": "siground(seed*P/period[1],2)", "description": "", "group": "Ungrouped variables", "name": "C"}, "seed": {"templateType": "anything", "definition": "random(0.03..0.1#0.0001)", "description": "", "group": "Ungrouped variables", "name": "seed"}, "iparounded": {"templateType": "anything", "definition": "precround(ipa,2)", "description": "", "group": "Ungrouped variables", "name": "iparounded"}, "ipa": {"templateType": "anything", "definition": "ipadec*100", "description": "", "group": "Ungrouped variables", "name": "ipa"}, "ippdec": {"templateType": "anything", "definition": "C/P", "description": "", "group": "Ungrouped variables", "name": "ippdec"}, "period": {"templateType": "anything", "definition": "random([random('yearly','annually'),1,'year'],[random('half-yearly','semiannually'),2,'half-year'],['quarterly', 4, 'quarter'],['monthly',12,'month'],['daily', 365,'day'])", "description": "", "group": "Ungrouped variables", "name": "period"}}, "functions": {}, "name": "interest rate - ordinary perpetuity", "rulesets": {}, "parts": [{"useCustomName": false, "marks": 0, "showFeedbackIcon": true, "showCorrectAnswer": true, "sortAnswers": false, "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "scripts": {}, "type": "gapfill", "customMarkingAlgorithm": "", "customName": "", "unitTests": [], "gaps": [{"useCustomName": false, "variableReplacements": [], "mustBeReduced": false, "marks": 1, "allowFractions": false, "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "extendBaseMarkingAlgorithm": true, "showPrecisionHint": false, "showCorrectAnswer": true, "type": "numberentry", "scripts": {}, "minValue": "ipa", "customMarkingAlgorithm": "", "precision": "2", "showFeedbackIcon": true, "notationStyles": ["plain", "en", "si-en"], "customName": "", "precisionMessage": "You have not given your answer to 2 decimal places.", "precisionPartialCredit": 0, "maxValue": "ipa", "variableReplacementStrategy": "originalfirst", "precisionType": "dp", "strictPrecision": true, "unitTests": []}], "prompt": "
Suppose you want to set up a scholarship or a donation that gives $\\$\\var{C}$ at the end of every {period[2]} forever. If you have $\\$\\var{P}$ to invest and the interest is compounded {period[0]} what would the nominal interest rate need to be?
\n[[0]] $\\%$ p.a. (to 2 decimal places)
"}], "extensions": [], "ungrouped_variables": ["period", "seed", "P", "C", "ippdec", "ipadec", "ipa", "iparounded"], "variable_groups": [], "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": "Financial maths. Cash flow amount of an ordinary perpetuity."}, "tags": [], "advice": "You are asked to find the nominal interest rate of an ordinary perpetuity (since the payments are at the end of each period and last forever). Therefore we will use the ordinary perpetuity formula
\n$\\displaystyle P=\\frac{C}{i}$
\nwhere $P$ is the present value, $C$ is the cash flow per period and $i$ is the interest rate per period.
\nIn our situation we have,
\n$P=\\var{P}$,
\n$C=\\var{C}$,
\nand therefore we have
\n$\\displaystyle \\var{P}=\\frac{\\var{C}}{i}$
\nwhich we need to rearrange to solve for $i$.
\nWe multiply both sides by $i$ (so that $i$ isn't in the denominator)
\n$\\displaystyle \\var{P}i=\\var{C}$
\nThen divide both sides by $\\var{P}$ (to remove the multiplication by it)
\n$\\displaystyle i=\\frac{\\var{C}}{\\var{P}}$
\nRecall that $i$ is the interest rate per time period but we were asked for the interest rate per annum so we multiply by $\\var{period[1]}$ to get
\n$\\begin{array}\\displaystyle \\text{interest rate pa}&=\\var{period[1]}\\times \\frac{\\var{C}}{\\var{P}}\\\\&\\approx\\var{ipadec}\\\\&=\\var{iparounded}\\%\\quad \\text{(2 decimal places)}\\end{array}$
", "statement": "If you are unsure of how to do a question, click on Reveal answers to see the full working. Then, once you understand how to do the question, click on Try another question like this one to start again. Do each question repeatedly to ensure you have mastered it.
", "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}