// Numbas version: finer_feedback_settings {"name": "Josh's copy of John's copy of Matrix arithmetic", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "functions": {}, "statement": "
Given the matrix:
\n\\(A=\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}\\)
\n", "extensions": [], "tags": [], "rulesets": {}, "parts": [{"scripts": {}, "prompt": "Evaluate the following expression:
\n\\(\\left(A^2+\\var{k1}A+\\var{k2}I\\right)^T\\) = [[0]]
", "gaps": [{"scripts": {}, "correctAnswerFractions": false, "numColumns": "2", "unitTests": [], "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "correctAnswer": "matrix([\n [b11,b12],\n [b21,b22]\n]) ", "customMarkingAlgorithm": "", "showFeedbackIcon": true, "markPerCell": false, "type": "matrix", "marks": "5", "useCustomName": false, "tolerance": 0, "showCorrectAnswer": true, "customName": "", "allowFractions": false, "allowResize": false, "variableReplacementStrategy": "originalfirst", "numRows": "2"}], "unitTests": [], "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "showFeedbackIcon": true, "type": "gapfill", "marks": 0, "useCustomName": false, "showCorrectAnswer": true, "customName": "", "sortAnswers": false, "variableReplacementStrategy": "originalfirst"}], "variables": {"k1": {"group": "Ungrouped variables", "definition": "2", "name": "k1", "description": "", "templateType": "number"}, "a12": {"group": "Ungrouped variables", "definition": "-1", "name": "a12", "description": "", "templateType": "number"}, "k2": {"group": "Ungrouped variables", "definition": "2", "name": "k2", "description": "", "templateType": "number"}, "b12": {"group": "Ungrouped variables", "definition": "{a21}*{a11}+{a22}*{a21}+{k1}*{a21}", "name": "b12", "description": "", "templateType": "anything"}, "b22": {"group": "Ungrouped variables", "definition": "{a21}*{a12}+{a22}^2+{k1}*{a22}+{k2}", "name": "b22", "description": "", "templateType": "anything"}, "a22": {"group": "Ungrouped variables", "definition": "-2", "name": "a22", "description": "", "templateType": "number"}, "a11": {"group": "Ungrouped variables", "definition": "-2", "name": "a11", "description": "", "templateType": "number"}, "b11": {"group": "Ungrouped variables", "definition": "{a11}^2+{a12}*{a21}+{k1}*{a11}+{k2}", "name": "b11", "description": "", "templateType": "anything"}, "b21": {"group": "Ungrouped variables", "definition": "{a12}*{a11}+{a22}*{a12}+{k1}*{a12}", "name": "b21", "description": "", "templateType": "anything"}, "a21": {"group": "Ungrouped variables", "definition": "0", "name": "a21", "description": "", "templateType": "number"}}, "preamble": {"js": "", "css": ""}, "name": "Josh's copy of John's copy of Matrix arithmetic", "ungrouped_variables": ["a11", "a12", "a21", "a22", "k1", "k2", "b11", "b12", "b21", "b22"], "metadata": {"description": "This question tests students knowledge of basic matrix arithmetic.
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\\(A=\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}\\)
\n\\(A^2=\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}\\)
\nRemember multiplication of matrices is carried out by multiplying the rows of the first matrix by the columns of the second matrix.
\n\\(A^2=\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}\\begin{pmatrix} \\var{a11}& \\var{a12}\\\\ \\var{a21}&\\var{a22}\\end{pmatrix}=\\begin{pmatrix}\\var{a11}*\\var{a11}+\\var{a12}*\\var{a21}&\\var{a11}*\\var{a12}+\\var{a12}*\\var{a22}\\\\ \\var{a21}*\\var{a11}+\\var{a22}*\\var{a21}&\\var{a21}*\\var{a12}+\\var{a22}*\\var{a22}\\end{pmatrix}\\)
\n\\(A^2=\\begin{pmatrix}\\simplify{{a11}*{a11}+{a12}*{a21}}&\\simplify{{a11}*{a12}+{a12}*{a22}}\\\\ \\simplify{{a21}*{a11}+{a22}*{a21}}&\\simplify{{a21}*{a12}+{a22}*{a22}}\\end{pmatrix}\\)
\n\\(\\var{k1}A=\\begin{pmatrix} \\var{k1}*\\var{a11}& \\var{k1}*\\var{a12}\\\\ \\var{k1}*\\var{a21}&\\var{k1}*\\var{a22}\\end{pmatrix}=\\begin{pmatrix} \\simplify{{k1}*{a11}}& \\simplify{{k1}*{a12}}\\\\ \\simplify{{k1}*{a21}}&\\simplify{{k1}*{a22}}\\end{pmatrix}\\)
\n\\(\\left(A^2+\\var{k1}A+\\var{k2}I\\right)^t=\\left(\\begin{pmatrix}\\simplify{{a11}*{a11}+{a12}*{a21}}&\\simplify{{a11}*{a12}+{a12}*{a22}}\\\\ \\simplify{{a21}*{a11}+{a22}*{a21}}&\\simplify{{a21}*{a12}+{a22}*{a22}}\\end{pmatrix}+\\begin{pmatrix} \\simplify{{k1}*{a11}}& \\simplify{{k1}*{a12}}\\\\ \\simplify{{k1}*{a21}}&\\simplify{{k1}*{a22}}\\end{pmatrix}+\\begin{pmatrix} \\var{k2}&0\\\\0&\\var{k2}\\end{pmatrix}\\right)^t\\)
\n\\(\\left(A^2+\\var{k1}A+\\var{k2}I\\right)^t=\\begin{pmatrix}\\simplify{{a11}*{a11}+{a12}*{a21}+{k1}{a11}+{k2}}&\\simplify{{a11}*{a12}+{a12}*{a22}+{k1}*{a12}}\\\\ \\simplify{{a21}*{a11}+{a22}*{a21}+{k1}*{a21}}&\\simplify{{a21}*{a12}+{a22}*{a22}+{k1}*{a22}+{k2}}\\end{pmatrix}^t\\)
\n\\(\\left(A^2+\\var{k1}A+\\var{k2}I\\right)^t=\\begin{pmatrix}\\simplify{{a11}*{a11}+{a12}*{a21}+{k1}{a11}+{k2}}&\\simplify{{a21}*{a11}+{a22}*{a21}+{k1}*{a21}}\\\\ \\simplify{{a11}*{a12}+{a12}*{a22}+{k1}*{a12}}&\\simplify{{a21}*{a12}+{a22}*{a22}+{k1}*{a22}+{k2}}\\end{pmatrix}\\)
", "type": "question", "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "John Steele", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2218/"}, {"name": "Josh Lim", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2990/"}]}]}], "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "John Steele", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2218/"}, {"name": "Josh Lim", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2990/"}]}